Groupwise Diffeomorphic Non-rigid Registration for Automatic Model Building
Conference paper
Abstract
We describe a framework for registering a group of images together using a set of non-linear diffeomorphic warps. The result of the groupwise registration is an implicit definition of dense correspondences between all of the images in a set, which can be used to construct statistical models of shape change across the set, avoiding the need for manual annotation of training images. We give examples on two datasets (brains and faces) and show the resulting models of shape and appearance variation. We show results of experiments demonstrating that the groupwise approach gives a more reliable correspondence than pairwise matching alone.
Keywords
Face Image Appearance Model Large Mode Active Appearance Model Image Registration Method
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Bajcsy, R., Lieberson, R., Reivich, M.: A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. J. Comput. Assis. Tomogr. 7, 618–625 (1983)CrossRefGoogle Scholar
- 2.Baker, S., Matthews, I., Schneider, J.: Image coding with active appearance models. Technical Report CMU-RI-TR-03-13, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (April 2003)Google Scholar
- 3.Christensen, G.E., Joshi, S.C., Miller, M.: Volumetric transformation of brain anatomy. IEEE Trans. Medical Image 16, 864–877 (1997)CrossRefGoogle Scholar
- 4.Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
- 5.Cootes, T.F., Taylor, C.J., Cooper, D., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
- 6.Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: An information theoretic approach to statistical shape modelling. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–20. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 7.Feldmar, J., Ayache, N.: Locally affine registration of free-form surfaces. In: CVPR 1994, pp. 496–501 (1994)Google Scholar
- 8.Jones, M.J., Poggio, T.: Multidimensional morphable models: A framework for representing and matching object classes. International Journal of Computer Vision 2(29), 107–131 (1998)zbMATHCrossRefGoogle Scholar
- 9.Lötjönen, J., Mäkelä, T.: Elastic matching using a deformation sphere. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 541–548. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 10.Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar
- 11.Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)CrossRefGoogle Scholar
- 12.Marsland, S., Twining, C.J.: Constructing data-driven optimal representations for iterative pairwise non-rigid registration. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 50–60. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 13.Marsland, S., Twining, C.J., Taylor, C.J.: Groupwise non-rigid registration using polyharmonic clamped-plate splines. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 771–779. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 14.McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)CrossRefGoogle Scholar
- 15.Meier, D., Fisher, E.: Parameter space warping: Shape-based correspondence between morphologically different objects. IEEE Trans. Medical Image 21, 31–47 (2002)CrossRefGoogle Scholar
- 16.Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSdb: The extended m2vts database. In: Proc. 2nd Conf. on Audio and Video-based Biometric Personal Verification. Springer, Heidelberg (1999)Google Scholar
- 17.Rissanen, J.: Stochastic Complexity in Statistical Inquiry. Series in Computer Science, vol. 15. World Scientific, Singapore (1989)zbMATHGoogle Scholar
- 18.Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3D statistical deformation models using non-rigid registration. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 77–84. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 19.Studholme, C., Hill, C., Hawkes, D.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32, 71–86 (1999)CrossRefGoogle Scholar
- 20.Twining, C., Marsland, S., Taylor, C.: Measuring geodesic distances on the space of bounded diffeomorphisms. In: Rosin, P.L., Marshall, D. (eds.) 13th British Machine Vison Conference, September 2002, vol. 2, pp. 847–856. BMVA Press (2002)Google Scholar
- 21.Wang, Y., Staib, L.H.: Elastic model based non-rigid registration incorporating statistical shape information. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1162–1173. Springer, Heidelberg (1998)Google Scholar
- 22.Zitová, B., Flusser, J.: Image registration methods: A survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2004