Advertisement

Morphological Operations on Matrix-Valued Images

  • Bernhard Burgeth
  • Martin Welk
  • Christian Feddern
  • Joachim Weickert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3024)

Abstract

The output of modern imaging techniques such as diffusion tensor MRI or the physical measurement of anisotropic behaviour in materials such as the stress-tensor consists of tensor-valued data. Hence adequate image processing methods for shape analysis, skeletonisation, denoising and segmentation are in demand. The goal of this paper is to extend the morphological operations of dilation, erosion, opening and closing to the matrix-valued setting. We show that naive approaches such as componentwise application of scalar morphological operations are unsatisfactory, since they violate elementary requirements such as invariance under rotation. This lead us to study an analytic and a geometric alternative which are rotation invariant. Both methods introduce novel non-component-wise definitions of a supremum and an infimum of a finite set of matrices. The resulting morphological operations incorporate information from all matrix channels simultaneously and preserve positive definiteness of the matrix field. Their properties and their performance are illustrated by experiments on diffusion tensor MRI data.

Keywords

mathematical morphology dilation erosion matrix-valued imaging DT-MRI 

References

  1. 1.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proceedings of the IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  2. 2.
    Barnett, V.: The ordering of multivariate data. Journal of the Royal Statistical Society A 139(3), 318–355 (1976)CrossRefGoogle Scholar
  3. 3.
    Caselles, V., Sapiro, G., Chung, D.H.: Vector median filters, inf-sup convolutions, and coupled PDE’s: theoretical connections. Journal of Mathematical Imaging and Vision 12(2), 109–119 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Castaño Moraga, C.A., Westin, C.-F., Ruiz-Alzola, J.: Homomorphic filtering of DT-MRI fields. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 990–991. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Comer, M.L., Delp, E.J.: Morphological operations for color image processing. Journal of Electronic Imaging 8(3), 279–289 (1999)CrossRefGoogle Scholar
  6. 6.
    Feddern, C., Weickert, J., Burgeth, B.: Level-set methods for tensor-valued images. In: Faugeras, O., Paragios, N. (eds.) Proc. Second IEEE Workshop on Geometric and Level Set Methods in Computer Vision, Nice, France, October 2003, pp. 65–72 (2003) INRIAGoogle Scholar
  7. 7.
    Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, June 1987, pp. 281–305 (1987)Google Scholar
  8. 8.
    Goutsias, J., Heijmans, H.J.A.M., Sivakumar, K.: Morphological operators for image sequences. Computer Vision and Image Understanding 62, 326–346 (1995)CrossRefGoogle Scholar
  9. 9.
    Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer, Dordrecht (1995)Google Scholar
  10. 10.
    Guichard, F., Morel, J.-M.: Partial differential equations and image iterative filtering. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analysis. IMA Conference Series (New Series), vol. 63, pp. 525–562. Clarendon Press, Oxford (1997)Google Scholar
  11. 11.
    Hardie, R., Arce, G.: Ranking in Rp and its use in multivariate image estimation. IEEE Transactions on Circuits, Systems and Video Technology 1(2), 197–209 (1991)CrossRefGoogle Scholar
  12. 12.
    Louverdis, G., Vardavoulia, M.I., Andreadis, I., Tsalides, P.: A new approach to morphological color image processing. Pattern Recognition 35, 1733–1741 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor MR imaging of the human brain. Radiology 201(3), 637–648 (1996)Google Scholar
  14. 14.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)zbMATHGoogle Scholar
  15. 15.
    Soille, P.: Morphological Image Analysis. Springer, Berlin (1999)zbMATHGoogle Scholar
  16. 16.
    Talbot, H., Evans, C., Jones, R.: Complete ordering and multivariate mathematical morphology. In: Heijmans, H.J.A.M., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol. 12. Kluwer, Dordrecht (1998)Google Scholar
  17. 17.
    Tschumperlé, D., Deriche, R.: Orthonormal vector sets regularization with PDE’s and applications. International Journal of Computer Vision 50(3), 237–252 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Weickert, J., Brox, T.: Diffusion and regularization of vector- and matrixvalued images. In: Nashed, M.Z., Scherzer, O. (eds.) Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics, vol. 313, pp. 251–268. AMS, Providence (2002)Google Scholar
  19. 19.
    Welk, M., Feddern, C., Burgeth, B., Weickert, J.: Median filtering of tensor-valued images. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 17–24. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bernhard Burgeth
    • 1
  • Martin Welk
    • 1
  • Christian Feddern
    • 1
  • Joachim Weickert
    • 1
  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations