Advertisement

Image Similarity Using Mutual Information of Regions

  • Daniel B. Russakoff
  • Carlo Tomasi
  • Torsten Rohlfing
  • Calvin R. MaurerJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3023)

Abstract

Mutual information (MI) has emerged in recent years as an effective similarity measure for comparing images. One drawback of MI, however, is that it is calculated on a pixel by pixel basis, meaning that it takes into account only the relationships between corresponding individual pixels and not those of each pixel’s respective neighborhood. As a result, much of the spatial information inherent in images is not utilized. In this paper, we propose a novel extension to MI called regional mutual information (RMI). This extension efficiently takes neighborhood regions of corresponding pixels into account. We demonstrate the usefulness of RMI by applying it to a real-world problem in the medical domain—intensity-based 2D-3D registration of X-ray projection images (2D) to a CT image (3D). Using a gold-standard spine image data set, we show that RMI is a more robust similarity meaure for image registration than MI.

Keywords

Mutual Information Independent Component Analysis Central Limit Theorem Image Registration Independent Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (1991)zbMATHCrossRefGoogle Scholar
  2. 2.
    Viola, P., Wells III, W.M.: Alignment by maximization of mutual information. International Journal of Computer Vision 24, 137–154 (1997)CrossRefGoogle Scholar
  3. 3.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16, 187–198 (1997)CrossRefGoogle Scholar
  4. 4.
    Pluim, J., Maintz, J., Viergever, M.: Mutual information based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22, 986–1004 (2003)CrossRefGoogle Scholar
  5. 5.
    Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 32, 71–86 (1999)CrossRefGoogle Scholar
  6. 6.
    Rodriguez-Carranza, C., Loew, M.: A weighted and deterministic entropy measure for image registration using mutual information. In: Proc. SPIE 3338 Medical Imaging 1998: Image Processing, pp. 155–166 (1998)Google Scholar
  7. 7.
    Ma, B., Hero, A.O., Gorman, J., Michel, O.: Image registration with minimal spanning tree algorithm. In: IEEE Int. Conf. on Image Processing, Vancouver, BC (2000)Google Scholar
  8. 8.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. IEEE Trans. Med. Imaging 19, 809–814 (2000)CrossRefGoogle Scholar
  9. 9.
    Rueckert, D., Clarkson, M.J., Hill, D.L.G., Hawkes, D.J.: Non-rigid registration using higher-order mutual information. In: Proc. SPIE 3979 Medical Imaging 2000: Image Processing, pp. 438–447 (2000)Google Scholar
  10. 10.
    Shannon, C.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423 (1948)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Bell, A., Sejnowski, T.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)CrossRefGoogle Scholar
  12. 12.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons Inc, Chichester (2001)zbMATHGoogle Scholar
  13. 13.
    Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. Annals of Statistics 12, 793–815 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hoeffding, W., Robbins, H.: The central limit theorem for dependent random variables. Duke Mathematical Journal 15, 773–780 (1948)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lavallée, S., Troccaz, J., Sautot, P., Mazier, B., Cinquin, P., Merloz, P., Chirossel, J.P.: Computer-assisted spinal surgery using anatomy-based registration. In: Taylor, R.H., Lavallée, S., Burdea, G., Mösges, R. (eds.) Computer-Integrated Surgery: Technology and Clinical Applications, pp. 425–449. MIT Press, Cambridge (1996)Google Scholar
  16. 16.
    Weese, J., Penney, G.P., Buzug, T.M., Hill, D.L.G., Hawkes, D.J.: Voxel-based 2- D/3-D registration of fluoroscopy images and CT scans for image-guided surgery. IEEE Trans. Inform. Technol. Biomedicine 1, 284–293 (1997)CrossRefGoogle Scholar
  17. 17.
    Murphy, M.J., Adler Jr., J.R., Bodduluri, M., Dooley, J., Forster, K., Hai, J., Le, Q., Luxton, G., Martin, D., Poen, J.: Image-guided radiosurgery for the spine and pancreas. Comput. Aided Surg. 5, 278–288 (2000)CrossRefGoogle Scholar
  18. 18.
    Ryu, S.I., Chang, S.D., Kim, D.H., Murphy, M.J., Le, Q.T., Martin, D.P., Adler Jr., J.R.: Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery 49, 838–846 (2001)CrossRefGoogle Scholar
  19. 19.
    Russakoff, D.B., Rohlfing, T., Maurer, Jr. C.R.: Fast intensity-based 2D-3D image registration of clinical data using light fields. In: Proc. 9th IEEE Int. Conf. Computer Vision (ICCV 2003), pp. 416–423 (2003)Google Scholar
  20. 20.
    Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L.G., Hawkes, D.J.: A comparison of similarity measures for use in 2D-3D medical image registration. IEEE Trans. Med. Imaging 17, 586–595 (1998)CrossRefGoogle Scholar
  21. 21.
    Russakoff, D.B., Rohlfing, T., Ho, A., Kim, D.H., Shahidi, R., Adler Jr., J.R., Maurer, J.C.R.: Evaluation of intensity-based 2D-3D spine image registration using clinical gold-standard data. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 151–160. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Maurer Jr., C.R., Maciunas, R.J., Fitzpatrick, J.M.: Registration of head CT images to physical space using a weighted combination of points and surfaces. IEEE Trans. Med. Imaging 17, 753–761 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Daniel B. Russakoff
    • 1
    • 2
  • Carlo Tomasi
    • 3
  • Torsten Rohlfing
    • 2
  • Calvin R. MaurerJr.
    • 2
  1. 1.Department of Computer ScienceStanford UniversityStanfordUSA
  2. 2.Image Guidance LaboratoriesStanford UniversityStanfordUSA
  3. 3.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations