Advertisement

A Correlation-Based Approach to Robust Point Set Registration

  • Yanghai Tsin
  • Takeo Kanade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3023)

Abstract

Correlation is a very effective way to align intensity images. We extend the correlation technique to point set registration using a method we call kernel correlation. Kernel correlation is an affinity measure, and it is also a function of the point set entropy. We define the point set registration problem as finding the maximum kernel correlation configuration of the the two point sets to be registered. The new registration method has intuitive interpretations, simple to implement algorithm and easy to prove convergence property. Our method shows favorable performance when compared with the iterative closest point (ICP) and EM-ICP methods.

Keywords

Cost Function Registration Method Iterative Close Point Registration Algorithm Iterative Close Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE TPAMI 14(2), 239–256 (1992)Google Scholar
  2. 2.
    Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE TPAMI 10(6), 849–865 (1988)Google Scholar
  3. 3.
    Chen, H., Meer, P.: Robust computer vision through kernel density estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. Part I, 236–250. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Fitsgibbon, A.: Robust registration of 2D and 3D point sets. In: BMVC 2001 (2001)Google Scholar
  5. 5.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE TPAMI 6, 1721–1741 (1984)Google Scholar
  6. 6.
    Granger, S., Pennec, X.: Multi-scale EM-ICP: A fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  8. 8.
    Huber, P.J.: Robust Statistics. John Wiley & Sons, New York (1981)zbMATHCrossRefGoogle Scholar
  9. 9.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the hausdorff distance. IEEE TPAMI 15(9), 850–863 (1993)Google Scholar
  10. 10.
    Lavallée, S., Szeliski, R.: Recovering the position and orientation of free-form objects from image contours using 3-D distance maps. IEEE TPAMI 17(4), 378–390 (1995)Google Scholar
  11. 11.
    Parzen, E.: On estimation of a probability density function and mode. Annals of Mathematical Statistics 33(3), 1065–1076 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  13. 13.
    Principe, J., Xu, D.: Information-theoretic learning using Renyi’s quadratic entropy. In: First International Workshop on Independent Component Analysis (ICA 1999), pp. 407–412 (1999)Google Scholar
  14. 14.
    Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign procrustes matching algorithm. Information Processing in Medical Imaging, pp. 29–42 (1997)Google Scholar
  15. 15.
    Rényi, A.: On measures of entropy and information. In: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 547–561. University of California Press, Berkeley (1961)Google Scholar
  16. 16.
    Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley- Interscience, New York (1987)zbMATHCrossRefGoogle Scholar
  17. 17.
    Scott, G.L., Longuet-Higgins, H.C.: An algorithm for associating the features of two images. Proceedings: Biological Sciences 244(1309), 21–26 (1991)CrossRefGoogle Scholar
  18. 18.
    Tsin, Y.: Kernel correlation as an affinity measure in point-sampled vision problems. Techical Report, CMU-RI-03-36 (2003)Google Scholar
  19. 19.
    Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. IJCV 13(2) (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yanghai Tsin
    • 1
  • Takeo Kanade
    • 2
  1. 1.Siemens Corporate ResearchPrincetonUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations