Advertisement

A Topology Preserving Non-rigid Registration Method Using a Symmetric Similarity Function-Application to 3-D Brain Images

  • Vincent Noblet
  • Christian Heinrich
  • Fabrice Heitz
  • Jean-Paul Armspach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3023)

Abstract

3-D non-rigid brain image registration aims at estimating consistently long-distance and highly nonlinear deformations corresponding to anatomical variability between individuals. A consistent mapping is expected to preserve the integrity of warped structures and not to be dependent on the arbitrary choice of a reference image: the estimated transformation from A to B should be equal to the inverse transformation from B to A. This paper addresses these two issues in the context of a hierarchical parametric modeling of the mapping, based on B-spline functions. The parameters of the model are estimated by minimizing a symmetric form of the standard sum of squared differences criterion. Topology preservation is ensured by constraining the Jacobian of the transformation to remain positive on the whole continuous domain of the image as a non trivial 3-D extension of a previous work [1] dealing with the 2-D case. Results on synthetic and real-world data are shown to illustrate the contribution of preserving topology and using a symmetric similarity function.

References

  1. 1.
    Musse, O., Heitz, F., Armspach, J.P.: Topology preserving deformable image matching using constrained hierarchical parametric models. IEEE Transactions on Image Processing 10, 1081–1093 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Toga, A., Thompson, P.: Image registration and the construction of multidimensional brain atlases. In: Bankman, I. (ed.) Handbook of medical imaging. Processing and analysis, pp. 635–653. Academic Press, London (2000)CrossRefGoogle Scholar
  3. 3.
    Cachier, P., Rey, D.: Symmetrization of the non-rigid registration problem using inversion-invariant energies: application to multiple sclerosis. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 472–481. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Ashburner, J., Andersson, J., Friston, K.: Image registration using a symmetric prior - in three dimensions. Human Brain Mapping 9, 212–225 (2000)CrossRefGoogle Scholar
  5. 5.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2, 243–260 (1998)CrossRefGoogle Scholar
  6. 6.
    Christensen, G., Johnson, H.: Consistent image registration. IEEE Transactions on Medical Imaging 20, 568–582 (2001)CrossRefGoogle Scholar
  7. 7.
    Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1998)zbMATHGoogle Scholar
  8. 8.
    Musse, O., Heitz, F., Armspach, J.P.: Fast deformable matching of 3D images over multiscale nested subspaces. Application to atlas-based MRI segmentation. Pattern Recognition 36, 1881–1899 (2003)zbMATHGoogle Scholar
  9. 9.
    Heinrich, C., Noblet, V., Heitz, F., Armspach, J.P.: 3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization. Technical report, LSIIT, UMR CNRS-ULP 7005 (2003)Google Scholar
  10. 10.
    Rao, S.: Engineering optimization: theory and practice, 3rd edn. Wiley-Interscience, Chichester (1996)Google Scholar
  11. 11.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied interval analysis. Springer, Heidelberg (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Vincent Noblet
    • 1
    • 2
  • Christian Heinrich
    • 1
  • Fabrice Heitz
    • 1
  • Jean-Paul Armspach
    • 2
  1. 1.Laboratoire des Sciences de l’Image, de l’Informatique et de la TélédétectionLSIIT, UMR CNRS-ULP 7005Illkirch CedexFrance
  2. 2.Institut de Physique BiologiqueFaculté de médecine, UMR CNRS-ULP 7004Strasbourg CedexFrance

Personalised recommendations