Weak Hypotheses and Boosting for Generic Object Detection and Recognition

  • A. Opelt
  • M. Fussenegger
  • A. Pinz
  • P. Auer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3022)

Abstract

In this paper we describe the first stage of a new learning system for object detection and recognition. For our system we propose Boosting [5] as the underlying learning technique. This allows the use of very diverse sets of visual features in the learning process within a common framework: Boosting — together with a weak hypotheses finder — may choose very inhomogeneous features as most relevant for combination into a final hypothesis. As another advantage the weak hypotheses finder may search the weak hypotheses space without explicit calculation of all available hypotheses, reducing computation time. This contrasts the related work of Agarwal and Roth [1] where Winnow was used as learning algorithm and all weak hypotheses were calculated explicitly. In our first empirical evaluation we use four types of local descriptors: two basic ones consisting of a set of grayvalues and intensity moments and two high level descriptors: moment invariants [8] and SIFTs [12]. The descriptors are calculated from local patches detected by an interest point operator. The weak hypotheses finder selects one of the local patches and one type of local descriptor and efficiently searches for the most discriminative similarity threshold. This differs from other work on Boosting for object recognition where simple rectangular hypotheses [22] or complex classifiers [20] have been used. In relatively simple images, where the objects are prominent, our approach yields results comparable to the state-of-the-art [3]. But we also obtain very good results on more complex images, where the objects are located in arbitrary positions, poses, and scales in the images. These results indicate that our flexible approach, which also allows the inclusion of features from segmented regions and even spatial relationships, leads us a significant step towards generic object recognition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 113–130. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Dorko, G., Schmid, C.: Selection of scale-invariant parts for object class recognition. In: Proc. International Conference on Computer Vision (2003)Google Scholar
  3. 3.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proc. CVPR 2003 (2003)Google Scholar
  4. 4.
    Freeman, W., Adelson, E.: The design and use of steerable filters. In: PAMI, pp. 891–906 (1991)Google Scholar
  5. 5.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalisation of on-line learning. Computer and System Sciences 55(1) (1997)Google Scholar
  6. 6.
    Garg, A., Agarwal, S., Huang, T.S.: Fusion of global and local information for object detection. In: Proc. CVPR, vol. 2, pp. 723–726 (2002)Google Scholar
  7. 7.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (2001)Google Scholar
  8. 8.
    Van Gool, L., Moons, T., Ungureanu, D.: Affine / photometric invariants for planar intensity patterns. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 642–651. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of the 4th ALVEY vision conference, pp. 147–151 (1988)Google Scholar
  10. 10.
    Laganiere, R.: A morphological operator for corner detection. Pattern Recognition 31(11), 1643–1652 (1998)CrossRefGoogle Scholar
  11. 11.
    Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision (1996)Google Scholar
  12. 12.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. ICCV, pp. 1150–1157 (1999)Google Scholar
  13. 13.
    Maass, W., Warmuth, M.: Efficient learning with virtual threshold gates. Information and Computation 141(1), 66–83 (1998)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mahamud, S., Hebert, M., Shi, J.: Object recognition using boosted discriminants. In: Proc. CVPR, vol. 1, pp. 551–558 (2001)Google Scholar
  15. 15.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proc. ICCV, pp. 525–531 (2001)Google Scholar
  16. 16.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proc. CVPR (2003)Google Scholar
  18. 18.
    Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. In: PAMI, vol. 19, pp. 530–534 (1997)Google Scholar
  19. 19.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision, 151–172 (2000)Google Scholar
  20. 20.
    Schneiderman, H., Kanade, T.: Object detection using the statistics of parts. International Journal of Computer Vision (to appear)Google Scholar
  21. 21.
    Shilat, E., Werman, M., Gdalyahu, Y.: Ridge’s corner detection and correspondence. In: Computer Vision and Pattern Recognition, pp. 976–981 (1997)Google Scholar
  22. 22.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR (2001)Google Scholar
  23. 23.
    Weber, M.: Unsupervised Learning of Models for Object Recognition. PhD thesis, California Institute of Technology, Pasadena, CA (2000)Google Scholar
  24. 24.
    Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Wuertz, R.P., Lourens, T.: Corner detection in color images by multiscale combination of end-stopped cortical cells. In: International Conference on Artificial Neuronal Networks, pp. 901–906 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. Opelt
    • 1
    • 2
  • M. Fussenegger
    • 1
    • 2
  • A. Pinz
    • 2
  • P. Auer
    • 1
  1. 1.Institute of Computer ScienceLeobenAustria
  2. 2.Institute of Electrical Measurement and Measurement Signal ProcessingGrazAustria

Personalised recommendations