Advertisement

From a 2D Shape to a String Structure Using the Symmetry Set

  • Arjan Kuijper
  • Ole Fogh Olsen
  • Peter Giblin
  • Philip Bille
  • Mads Nielsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3022)

Abstract

Many attempts have been made to represent families of 2D shapes in a simpler way. These approaches lead to so-called structures as the Symmetry Set (\(\mathcal{SS}\)) and a subset of it, the Medial Axis (\(\mathcal{MA}\)).

In this paper a novel method to represent the \(\mathcal{SS}\) as a string is presented. This structure is related to so-called arc-annotated sequences, and allows faster and simpler query algorithms for comparison and database applications than graph structures, used to represent the \(\mathcal{MA}\).

Example shapes are shown and their data structures derived. They show the stability and robustness of the \(\mathcal{SS}\) and its string representation.

Keywords

String Representation Graph Structure Medial Axis Cusp Point Circle Tangent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blum, H.: Biological shape and visual science (part i). Journal of Theoretical Biology 38, 205–287 (1973)CrossRefGoogle Scholar
  2. 2.
    Bouix, S., Siddiqi, K.: Divergence-based medial surfaces. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 603–620. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Dimitrov, P., Phillips, C., Siddiqi, K.: Robust and efficient skeletal graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000, vol. 1, pp. 417–423 (2000)Google Scholar
  4. 4.
    Sebastian, T., Klein, P., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: Proceedings of the 8th International Conference on Computer Vision, pp. 755–762 (2001)Google Scholar
  5. 5.
    Siddiqi, K., Kimia, B.: A shock grammar for recognition. In: Proceedngs of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1996, pp. 507–513 (1996)Google Scholar
  6. 6.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 30, 1–22 (1999)Google Scholar
  7. 7.
    Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamilton-jacobi skeletons. International Journal of Computer Vision 48, 215–231 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Tek, H., Kimia, B.: Symmetry maps of free-form curve segments via wave propagation. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 362–369 (1999)Google Scholar
  9. 9.
    Bruce, J.W., Giblin, P.J.: Curves and Singularities. Cambridge University Press, Cambridge (1984)zbMATHGoogle Scholar
  10. 10.
    Bafna, V., Muthukrishnan, S., Ravi, R.: Computing similarity between rna strings. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 1–16. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between two RNA structures. Journal of Computational Biology 9, 371–388 (2002); Also appeared in RECOMB 2001CrossRefGoogle Scholar
  12. 12.
    Bruce, J.W., Giblin, P.J., Gibson, C.: Symmetry sets. Proceedings of the Royal Society of Edinburgh 101, 163–186 (1985)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Giblin, P.J., Kimia, B.B.: On the local form and transitions of symmetry sets, medial axes, and shocks. International Journal of Computer Vision 54, 143–156 (2003)zbMATHCrossRefGoogle Scholar
  14. 14.
    Giblin, P.J., Kimia, B.B.: On the intrinsic reconstruction of shape from its symmetries. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 895–911 (2003)CrossRefGoogle Scholar
  15. 15.
    Banchoff, T., Giblin, P.J.: Global theorems for symmetry sets of smooth curves and polygons in the plane. Proceedings of the Royal Society of Edinburgh 106, 221–231 (1987)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Bruce, J.W., Giblin, P.J.: Growth, motion and 1-parameter families of symmetry sets. Proceedings of the Royal Society of Edinburgh 104, 179–204 (1986)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Kuijper, A.: Computing symmetry sets from 2D shapes, Technical report IT University of Copenhagen no TR-2003-36 (2003), http://www.itu.dk/pub/Reports/ITU-TR-2003-36.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Arjan Kuijper
    • 1
  • Ole Fogh Olsen
    • 1
  • Peter Giblin
    • 2
  • Philip Bille
    • 3
  • Mads Nielsen
    • 1
  1. 1.Image Group, IT-University of CopenhagenCopenhagenDenmark
  2. 2.Department of Mathematical SciencesThe University of LiverpoolLiverpoolUnited Kingdom
  3. 3.Algorithm GroupIT-University of CopenhagenCopenhagenDenmark

Personalised recommendations