Advertisement

A Robust Probabilistic Estimation Framework for Parametric Image Models

  • Maneesh Singh
  • Himanshu Arora
  • Narendra Ahuja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3021)

Abstract

Models of spatial variation in images are central to a large number of low-level computer vision problems including segmentation, registration, and 3D structure detection. Often, images are represented using parametric models to characterize (noise-free) image variation, and, additive noise. However, the noise model may be unknown and parametric models may only be valid on individual segments of the image. Consequently, we model noise using a nonparametric kernel density estimation framework and use a locally or globally linear parametric model to represent the noise-free image pattern. This results in a novel, robust, redescending, M- parameter estimator for the above image model which we call the Kernel Maximum Likelihood estimator (KML). We also provide a provably convergent, iterative algorithm for the resultant optimization problem. The estimation framework is empirically validated on synthetic data and applied to the task of range image segmentation.

Keywords

Image Model Range Image Recursive Little Square Less Square Estimator Kernel Density Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Huber, P.J.: Robust regression: Asymptotics, conjectures and monte carlo. The Annals of Statistics 1, 799–821 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Yohai, V.J., Maronna, R.A.: Asymptotic behavior of M-estimators for the linear model. The Annals of Statistics 7, 258–268 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Koenker, R., Portnoy, S.: M-estimation of multivariate regressions. Journal of Amer. Stat. Assoc. 85, 1060–1068 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chu, C.K., Glad, I.K., Godtliebsen, F., Marron, J.S.: Edge-preserving smoothers for image processing. Journal of the American Statistical Association 93, 526–541 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hillebrand, M., Muller, C.H.: On consistency of redescending. M-kernel smoothers 9, 1897–1913 (2000), (unpublished manuscript), http://www.member.uni-oldenburg.de/ch.mueller/publik/neuarticle5.pdf Google Scholar
  6. 6.
    Ayer, S., Sawhney, H.: Layered representation of motion video using robust maximum likelihood estimation of mixture models and MDL encoding. In: Int’l Conf. Computer Vision, pp. 777–784 (1995)Google Scholar
  7. 7.
    Black, M.J., Jepson, A.D.: Estimating optical flow in segmented images using variable-order parametric models with local deformations. IEEE Trans. PAMI 18, 972–986 (1996)Google Scholar
  8. 8.
    Kumar, R., Hanson, A.R.: Robust methods of estimating pose and a sensitivity analysis. In: Image Understanding, CVGIP (1994)Google Scholar
  9. 9.
    Liu, L., Schunck, B.G., Meyer, C.C.: On robust edge detection. In: Int’l Workshop on Robust Computer Vision, pp. 261–286 (1990)Google Scholar
  10. 10.
    Mirza, M.J., Boyer, K.L.: Performance evaluation of a class of M-estimators for surface parameter estimation in noisy range data. IEEE Trans. on Robotics and Automation 9, 75–85 (1993)CrossRefGoogle Scholar
  11. 11.
    Stewart, C.V.: Robust parameter estimation in computer vision. SIAM Reviews 41, 513–537 (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: 6th Intl. Conf. on Computer Vision, pp 839–846 (1998)Google Scholar
  13. 13.
    Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. In: Image and Video Computing (2003)Google Scholar
  14. 14.
    Boorngaard, R., Weijer, J.: On the equivalence of local-mode finding, robust estimation and mean-shift analysis as used in early vision tasks. Pattern Recognition 3, 927–930 (2002)Google Scholar
  15. 15.
    Hyndman, R.J., Bashtannyk, D.M., Grunwald, G.K.: Estimating and vizualizing conditional densities. Journal of Comput. and Graph. Statistics 5, 315–336 (1996)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Chen, H., Meer, P.: Robust computer vision through kernel density estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 236–250. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Singh, M.K., Ahuja, N.: Regression-based bandwidth selection for segmentation using Parzen windows. In: 9th Intl. Conf. on Computer Vision, pp. 2–9 (2003)Google Scholar
  18. 18.
    Singh, M.K.: Image Segmentation and Robust Estimation Using Parzen Windows. University of Illinois at Urbana-Champaign. Ph.D. Thesis (2003)Google Scholar
  19. 19.
    Rousseeuw, P.J., Van Driessen, K.: Computing LTS Regression for Large Data Sets. University of Antwerp. Technical Report (1999)Google Scholar
  20. 20.
    Mizera, I., Muller, C.H.: Breakdown points and variation exponents of robust M-estimators in linear models. Annals of Statistics 27, 1164–1177 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hoover, A., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D.B., Bowyer, K.K., Eggert, D.W., Fitzgibbon, A.W., Fisher, R.B.: An experimental comparison of range image segmentation algorithms. IEEE Trans. on PAMI 18, 673–689 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Maneesh Singh
    • 1
  • Himanshu Arora
    • 1
  • Narendra Ahuja
    • 1
  1. 1.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations