Surface Reconstruction by Propagating 3D Stereo Data in Multiple 2D Images

  • Gang Zeng
  • Sylvain Paris
  • Long Quan
  • Maxime Lhuillier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3021)

Abstract

We present a novel approach to surface reconstruction from multiple images. The central idea is to explore the integration of both 3D stereo data and 2D calibrated images. This is motivated by the fact that only robust and accurate feature points that survived the geometry scrutiny of multiple images are reconstructed in space. The density insufficiency and the inevitable holes in the stereo data should be filled in by using information from multiple images. The idea is therefore to first construct small surface patches from stereo points, then to progressively propagate only reliable patches in their neighborhood from images into the whole surface using a best-first strategy. The problem reduces to searching for an optimal local surface patch going through a given set of stereo points from images. This constrained optimization for a surface patch could be handled by a local graph-cut that we develop. Real experiments demonstrate the usability and accuracy of the approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Computational Geometry: Theory and Applications (2001)Google Scholar
  2. 2.
    Blake, A., Zisserman, A.: Visual reconstruction. MIT Press, Cambridge (1987)Google Scholar
  3. 3.
    Boykov, Y., Kolmogorov, V.: Computing Geodesics and Minimal Surfaces via Graph Cuts. In: Int. Conf. on Computer Vision (2003)Google Scholar
  4. 4.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH (1996)Google Scholar
  5. 5.
    Faugeras, O., Keriven, R.: Complete dense stereovision using level set methods. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, p. 379. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Faugeras, O., Luong, Q., Papadopoulo, T.: Geometry of Multiple Images. MIT Press, Cambridge (2001)MATHGoogle Scholar
  7. 7.
    Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)MATHGoogle Scholar
  8. 8.
    Fua, P.: From multiple stereo views to multiple 3d surfaces. Int. Journal of Computer Vision (1997)Google Scholar
  9. 9.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. CU Press, Cambridge (2000)MATHGoogle Scholar
  10. 10.
    Hoff, W., Ahuja, N.: Surfaces from Stereo: Integrating Feature Matching, Disparity Estimation, and Contour Detection. Trans. on Pattern Analysis and Machine Intelligence (1989)Google Scholar
  11. 11.
    Hoppe, H., Derose, T., Duchamp, T., McDonalt, J., Stuetzle, W.: Surface reconstruction from unorganized points. Computer Graphics (1992)Google Scholar
  12. 12.
    Ishikawa, H., Geiger, D.: Occlusions, discontinuities, and epipolar lines in stereo. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, p. 232. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Kimmel, R.: 3D Shape Reconstruction from Autostereograms and Stereo. Journal of Visual Communication and Image Representation (2002)Google Scholar
  14. 14.
    Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. In: Int. Conf. on Computer Vision (1999)Google Scholar
  16. 16.
    Lee, M.S., Medioni, G., Mordohai, P.: Inference of Segmented Overlapping Surfaces from Binocular Stereo. Trans. on Pattern Analysis and Machine Intelligence (2002)Google Scholar
  17. 17.
    Lhuillier, M., Quan, L.: Quasi-dense reconstruction from image sequence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 125–139. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Lhuillier, M., Quan, L.: Surface Reconstruction by Integrating 3D and 2D Data of Multiple Views. In: Int. Conf. on Computer Vision (2003)Google Scholar
  19. 19.
    Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In: SIGGRAPH 1987 (1987)Google Scholar
  20. 20.
    Narayanan, P.J., Rander, P.W., Kanade, T.: Constructing Virtual Worlds using Dense Stereo. In: European Conf. on Computer Vision (1998)Google Scholar
  21. 21.
    Okutomi, M., Kanade, T.: A multiple-baseline stereo. Trans. on Pattern Analysis and Machine Intelligence (1993)Google Scholar
  22. 22.
    Paris, S., Sillion, F., Quan, L.: A Surface Reconstruction Method Using Global Graph Cut Optimization. In: Asian Conf. on Computer Vision (2004)Google Scholar
  23. 23.
    Roy, S.: Stereo without epipolar lines: A maximum-flow formulation. Int. Journal of Computer Vision (1999)Google Scholar
  24. 24.
    Sahwney, H.S., Tao, H., Kumar, R.: A global matching framework for stereo computation. In: Int. Conf. on Computer Vision (2001)Google Scholar
  25. 25.
    Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. In: Computer Vision and Pattern Recognition (1997)Google Scholar
  26. 26.
    Sethian, J.A.: Level-set methods and fast marching methods. CU Press, Cambridge (1999)MATHGoogle Scholar
  27. 27.
    Szeliski, R., Tonnesen, D., Terzopoulos, D.: Modelling surfaces of arbitrary topology with dynamic particles. In: Computer Vision and Pattern Recognition (1993)Google Scholar
  28. 28.
    Szeliski, R., Golland, P.: Stereo matching with transparency and matting. Int. Journal of Computer Vision (1999)Google Scholar
  29. 29.
    Tang, C.K., Medioni, G.: Curvature-augmented tensor voting for shape inference from noisy 3d data. Trans. on Pattern Analysis and Machine Intelligence (2002)Google Scholar
  30. 30.
    Whitaker, R.: A level-set approach to 3d reconstruction from range data. Int. Journal of Computer Vision (1998)Google Scholar
  31. 31.
    Zhang, Z., Shan, Y.: A progressive scheme for stereo matching. In: Pollefeys, M., Van Gool, L., Zisserman, A., Fitzgibbon, A.W. (eds.) SMILE 2000. LNCS, vol. 2018, p. 68. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  32. 32.
    Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit and non-parametric shape reconstruction from unorganized data using a variational level set method. In: Computer Vision and Image Understanding (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gang Zeng
    • 1
  • Sylvain Paris
    • 2
  • Long Quan
    • 1
  • Maxime Lhuillier
    • 3
  1. 1.Dep. of Computer ScienceHKUSTKowloon, Hong Kong
  2. 2.ARTIS / GRAVIR-IMAG, INRIA Rhône-AlpesSaint IsmierFrance
  3. 3.LASMEA, UMR CNRS 6602Université Blaise-PascalAubièreFrance

Personalised recommendations