Advertisement

New Methods for Uncertainty Representations in Neuro-Fuzzy Systems

  • Rafał Scherer
  • Janusz Starczewski
  • Adam Gawęda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3019)

Abstract

In this paper we discuss a new method for uncertainty representations in neuro-fuzzy systems. Expert uncertainty concerning antecedent fuzzy linguistic values are expressed in the form of linguistic values e.g. roughly, more or less. That idea is incorporated into relational neuro-fuzzy systems. In the paper both type-1 and type-2 fuzzy systems are considered. Numerical simulations of the new fuzzy model are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuska, R.: Fuzzy Modeling For Control. Kluwer Academic Publishers, Boston (1998)Google Scholar
  2. 2.
    CpaBlka, K., Rutkowski, L.: Soft Neuro - Fuzzy Systems. In: Proceedings of the Fifth Int’l Conf. Neural Networks and Soft Computing, Zakopane, pp. 296–301 (2000)Google Scholar
  3. 3.
    GaBlkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions. IEEE Transactions on Automatic Control AC-31, 785–787 (1986)CrossRefGoogle Scholar
  4. 4.
    Gaweda, A.E., Zurada, J.M.: Data-driven Linguistic Modeling Using Relational Fuzzy Rules. IEEE Trans. on Fuzzy Systems 11(1), 121–134 (2003)CrossRefGoogle Scholar
  5. 5.
    Gaweda, A.E., Zurada, J.M., Aronhime, P.B.: Efficient Data-Driven Modeling With Fuzzy Relational Rule Network. In: Proceedings of the 11th IEEE International Conference of Fuzzy Systems FUZZ-IEEE 2002, Honolulu, HI, May 12-17 (2002)Google Scholar
  6. 6.
    Gaweda, A.E., Zurada, J.M., Setiono, R.: Input Selection in Data-Driven Fuzzy Modeling. In: Proceedings of the 10th IEEE International Conference of Fuzzy Systems FUZZ-IEEE 2001, Melbourne Australia, December 2-5 (2001)Google Scholar
  7. 7.
    Karnik, N.N., Mendel, J.M.: An Introduction to Type-2 Fuzzy Logic Systems, Univ. Southern California Rep. (October 1998)Google Scholar
  8. 8.
    Karnik, N.N., Mendel, J.M.: Operations on type-2 fuzzy sets. Fuzzy Sets and Systems 122, 327–348 (2000)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 Fuzzy Logic Systems. IEEE Trans. on Fuzzy Systems 7(6), 643–658 (1999)CrossRefGoogle Scholar
  10. 10.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall PTR, Upper Saddle River (2001)zbMATHGoogle Scholar
  11. 11.
    Nowicki, R., Rutkowski, L.: Soft techniques for bayesian classification. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 537–544. Physica-Verlag, A Springer-Verlag Company, Heidelberg, New York (2003)Google Scholar
  12. 12.
    Pedrycz, W.: Fuzzy Control and Fuzzy Systems. Research Studies Press, London (1989)zbMATHGoogle Scholar
  13. 13.
    Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  14. 14.
    Rutkowski, L., CpaBlka, K.: A general approach to neuro - fuzzy systems. In: Proceedings of the 10th IEEE Int’l Conf. on Fuzzy Systems, Melbourne (2001)Google Scholar
  15. 15.
    Rutkowski, L., CpaBlka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control and Cybernetics 31(2), 297–308 (2002)zbMATHGoogle Scholar
  16. 16.
    Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065 (1993)zbMATHCrossRefGoogle Scholar
  17. 17.
    Rutkowski, L., RafajBlowicz, E.: On global rate of convergence of some nonparametric identification procedures. IEEE Transaction on Automatic Control AC-34(10), 1089–1091 (1989)CrossRefGoogle Scholar
  18. 18.
    Rutkowski, L.: Flexible Neuro-Fuzzy Systems: Structures, Learning and Performance Evaluation. Kluwer Academic Publishers, Dordrecht (2004)zbMATHGoogle Scholar
  19. 19.
    Rutkowski, L., CpaBlka, K.: Compromise approach to neuro-fuzzy systems. In: Proceedings of the 2nd Euro-Int’l Symposium on Computational Intelligence, Koszyce, vol. 76, pp. 85–90 (2002)Google Scholar
  20. 20.
    Rutkowski, L., CpaBlka, K.: Flexible neuro-fuzzy systems. IEEE Transactions on Neural Networks 14, 554–574 (2003)CrossRefGoogle Scholar
  21. 21.
    Rutkowski, L., CpaBlka, K.: Flexible weighted neuro-fuzzy systems. In: 9th Int’l Conf. on Neural Information Processing (ICONIP 2002), Singapore (2002)Google Scholar
  22. 22.
    Rutkowska, D., Rutkowski, L.: Fuzzy Neural Networks. In: Proceedings of the Second Int’l Conference on Parallel Processing and Applied Mathematics, pp. 507–519 (1997)Google Scholar
  23. 23.
    Rutkowska, D., Rutkowski, L., Nowicki, R.: Fuzzy neural networks with nonparametric defuzzification. In: Proceedings of the 9-th Int’l Conference System-Modelling-Control, Zakopane (1989)Google Scholar
  24. 24.
    Rutkowska, D., Nowicki, R., Rutkowski, L.: Singleton and Non-Singleton Fuzzy Systems with Nonparametric Defuzzification. In: Szczepaniak, P.S. (ed.) Computational Intelligence and Applications, pp. 292–301. Springer, Heidelberg (1999)Google Scholar
  25. 25.
    Rutkowska, D., Rutkowski, L.: Neural-Fuzzy-Genetic Parallel Computing System as a Tool for Various Applications. In: Proceedings of the Third Int’l Conf. on Parallel Processing & Applied Mathematics (PPAM 1999), pp. 489–498 (1999)Google Scholar
  26. 26.
    Rutkowska, D., Nowicki, R., Rutkowski, L.: Neuro-Fuzzy System with Inference Process Based on Zadeh Implication. In: Proceedings of the Third International Conference on Parallel Processing & Applied Mathematics (PPAM 1999), pp. 597–602 (1999)Google Scholar
  27. 27.
    Rutkowska, D., Rutkowski, L., Nowicki, R.: On processing of noisy data by fuzzy inference neural networks. In: Proceedings of the IASTED Int’l Conf. Signal and Image Processing (SIP 1999), Nassau, Bahamas, pp. 314–318 (1999)Google Scholar
  28. 28.
    Rutkowski, L.: New Soft Computing Techniques for System Modelling. Pattern Classification and Image Processing. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  29. 29.
    Rutkowski, L., CpaBlka, K.: Flexible Structures of Neuro - Fuzzy Systems. In: Quo Vadis Computational Intelligence, Studies in Fuzziness and Soft Computing, vol. 54, pp. 479–484. Springer, Heidelberg (2000)Google Scholar
  30. 30.
    Scherer, R., Rutkowski, L.: A Fuzzy Relational System with Linguistic Antecedent Certainty Factors. In: Advances in Soft Computing. Proceedings of the Sixth Int’l Conf. on Neural Network and Soft Computing, pp. 563–569. Springer, Heidelberg (2003)Google Scholar
  31. 31.
    Scherer, R., Rutkowski, L.: Relational Equations Initializing Neuro-Fuzzy System. In: 10th Zittau Fuzzy Colloquium, Zittau, Germany (2002)Google Scholar
  32. 32.
    Scherer, R., Rutkowski, L.: Neuro-Fuzzy Relational Systems. In: 2002 Int’l Conf. on Fuzzy Systems and Knowledge Discovery, Singapore (2002)Google Scholar
  33. 33.
    Setness, M., Babuska, R.: Fuzzy Relational Classifier Trained by Fuzzy Clustering. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 29(5), 619–625 (1999)CrossRefGoogle Scholar
  34. 34.
    Sugeno, M., Yasukawa, T.: A Fuzzy-Logic-Based Approach to Qualitative Modeling. IEEE Transactions on Fuzzy Systems 1(1), 7–31 (1993)CrossRefGoogle Scholar
  35. 35.
    Rutkowska, D., Rutkowski, L., Nowicki, R.: Neuro - fuzzy systems with inference based on bounded product. In: Advances in Neural Networks and Applications, pp. 104–109. Word Scientific and Engineering Society Press (2001)Google Scholar
  36. 36.
    Starczewski, J., Rutkowski, L.: Connectionist Structures of type 2 Fuzzy Inference Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 617–624. Springer, Heidelberg (2002)Google Scholar
  37. 37.
    Starczewski, J., Rutkowski, L.: Neuro-Fuzzy Systems of Type 2. In: 1st Int’l Conf. on Fuzzy Systems and Knowledge Discovery, Singapore, November 2002, vol. 2, pp. 458–462 (2002)Google Scholar
  38. 38.
    Starczewski, J., Rutkowski, L.: Interval Type 2 Neuro-Fuzzy Systems Based on Interval Consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, 6th Int’l Conf. on Neural Networks & Soft Computing, Zakopane, June 2002. Advances in Computing, pp. 570–577. Springer, Heidelberg (2003)Google Scholar
  39. 39.
    Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning — I. Information Sciences 8, 199–249 (1975)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rafał Scherer
    • 1
  • Janusz Starczewski
    • 1
  • Adam Gawęda
    • 2
  1. 1.Department of Computer EngineeringCzȩstochowa University of TechnologyCzȩstochowaPoland
  2. 2.University of LouisvilleLouisvilleUSA

Personalised recommendations