Online Scheduling of Multiprocessor Jobs with Idle Regulation

  • Andrei Tchernykh
  • Denis Trystram
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3019)

Abstract

In this paper, we focus on on-line scheduling of multiprocessor jobs with emphasis on the regulation of idle periods in the frame of general list policies. We consider a new family of scheduling strategies based on two phases which successively combine sequential and parallel executions of the jobs. These strategies are part of a more generic scheme introduced in [6]. The main result is to demonstrate that it is possible to estimate the amount of resources that should remain idle for a better regulation of the load and to obtain approximation bounds.

Keywords

Schedule Problem Schedule Strategy Competitive Ratio Penalty Factor List Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Błażewicz, J., Drozdowski, M.: Management of resources in parallel systems. In: The Handbook on Parallel and Distributed Processing, pp. 263–341. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Blayo, E., Debreu, L., Mounie, G., Trystram, D.: Dynamic Load Balansing for Adaptive Mesh Ocean Circulation Model. Engineering Simulation V22(2), 8–23 (2000)Google Scholar
  3. 3.
    Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer and Manufacturing Processes. Springer, New York (2001)MATHGoogle Scholar
  4. 4.
    Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling Divisible Loads in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamos (1996)Google Scholar
  5. 5.
    Chapin, S., Cirne, W., Feitelson, D., Patton Jones, J., Leutenegger, S.T., Schwiegelshohn, U., Smith, W., Talby, D.: Benchmarks and Standards for the Evaluation of Parallel Job Schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 66–89. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Thernykh, A., Rapine, C., Trystram, D.: Adaptive scheme for on-line scheduling of parallel jobs. Technical report at IMAG (2003)Google Scholar
  7. 7.
    Decker, T., Krandick, W.: Parallel real root isolation using the Descartes method. In: Banerjee, P., Prasanna, V.K., Sinha, B.P. (eds.) HiPC 1999. LNCS, vol. 1745, pp. 261–268. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Downey, A.: A parallel workload model and its implications for processor allocation. In: Proc. the 6th International Symposium of High Performance Distributed Computing, pp. 112–123 (1997)Google Scholar
  9. 9.
    Feitelson, D., Rudolph, L.: Toward convergence in job schedulers for parallel supercomputers. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162, pp. 1–26. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Feitelson, D., Rudolph, L.: Metrics and Benchmarking for Parallel Job Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 1–24. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Feitelson, D., Rudolph, L., Schweigelshohn, U., Sevcik, K., Wong, P.: Theory and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Ghosal, D., Serazii, G., Tripathi, S.: The processor working set and its use in scheduling multiprocessor system. IEEE Trans. Soft. Eng. 17(5), 443–453 (1991)CrossRefGoogle Scholar
  13. 13.
    Heymann, E., Senar, M., Luque, E., Livny, M.: Self-Adjusting Scheduling of Master-Worker Applications on Distributed Clusters. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 742–751. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Iyer, S., Druschel, P.: Anticipatory scheduling: A disk scheduling framework to overcome deceptive idleness in synchronous I/O. In: Symposium on Operating Systems Principles, pp. 117–130 (2001)Google Scholar
  15. 15.
    Lloyd, E.: Concurrent task systems. Operational Research 29(1), 189–201 (1981)MATHMathSciNetGoogle Scholar
  16. 16.
    Lepere, R., Mounie, G., Trystram, D.: An Approximation algorithm for scheduling Trees of Malleable Tasks. EJOR (2002)Google Scholar
  17. 17.
    McCann, C., Vaswani, R., Zahorjan, J.: A Dynamic Processor Allocation Policy for Multiprogrammed Shared-Memory Multiprocessors. ACM Transactions on Computer System 11(2), 146–178 (1993)CrossRefGoogle Scholar
  18. 18.
    Nguyen, T., Vaswani, R., Zahorjan, J.: Parallel Application Characterization for Multiprocessor Scheduling Policy Design. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Nguyen, T., Vaswani, R., Zahorjan, J.: Using Runtime Measured Workload Characteristics in Parallel Processor Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Rosti, E., Smirni, E., Serazzi, G., Dowdy, L.: Analysis of non-work-conserving processor partitioning policies. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 165–181. Springer, Heidelberg (1995)Google Scholar
  21. 21.
    Rapine, C., Scherson, I., Trystram, D.: On-Line Scheduling of Parallelizable Jobs. In: Pritchard, D., Reeve, J.S. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 322–327. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Sgall, J., Feldmann, A., Kao, M., Teng, S.: Optimal online scheduling of parallel jobs with dependencies. J. of Combinatorial Optimization 1(4), 393–411 (1998)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Sgall, J.: On-line scheduling-A Survey. In: Fiat, A. (ed.) Dagstuhl Seminar 1996. LNCS, vol. 1442, pp. 196–231. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Silva, F., Scherson, I.: Improving Parallel Job Scheduling Using Runtime Measurements. In: Feitelson, D.G., Rudolph, L. (eds.) IPDPS-WS 2000 and JSSPP 2000. LNCS, vol. 1911, pp. 18–39. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Sinnen, O., Sousa, L.: Exploiting Unused Time Slots in List Scheduling. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 166–170. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Shmoys, D., Wein, J., Williamson, D.: Scheduling parallel machines on-line. SIAM J. Comput. 24, 1313–1331 (1995)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Andrei Tchernykh
    • 1
  • Denis Trystram
    • 2
  1. 1.CICESEEnsenada, Baja CaliforniaMéxico
  2. 2.ID-IMAGMontbonnot St. MartinFrance

Personalised recommendations