Adaptive Computation over Dynamic and Heterogeneous Networks

  • Kaoutar El Maghraoui
  • Joseph E. Flaherty
  • Boleslaw K. Szymanski
  • James D. Teresco
  • Carlos Varela
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3019)


Over the last two decades, efficient message passing libraries have been developed for parallel scientific computation. Concurrently, programming languages have been created supporting dynamically reconfigurable distributed systems over the heterogeneous Internet. In this paper, we introduce SALSA-MPI, an actor programming language approach to scientific computing that extends MPI with a checkpointing and migration API and a runtime system that manages both periodic checkpoints and process or application migration. The goal is to enable dynamic network reconfiguration and load balancing without sacrificing application performance or requiring extensive code modifications. As driving technology for this effort of unifying parallel and distributed computing, we plan to use adaptive solvers of partial differential equations. Fields as diverse as fluid dynamics, material science, biomechanics, and ecology make use of parallel adaptive computation, but target architectures have traditionally been supercomputers and tightly-coupled clusters. SALSA-MPI is intended to allow these computations to make efficient use of more distributed and dynamic computing resources.


Virtual Machine Load Balance Application Programming Interface Heterogeneous Network Message Passing Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark, K., Flaherty, J.E., Shephard, M.S.: Appl. Numer. Math. Special ed. on Adaptive Methods for Partial Differential Equations 14 (1994)Google Scholar
  2. 2.
    Remacle, J.F., Karamete, B., Shephard, M.: Algorithm oriented mesh database. In: Proc. 9th Meshing Roundtable, New Orleans (2000)Google Scholar
  3. 3.
    Remacle, J.F., Klaas, O., Flahery, J.E., Shephard, M.S.: Parallel algorithm oriented mesh database. Eng. Comput. 18, 274–284 (2002)CrossRefGoogle Scholar
  4. 4.
    Bottasso, C.L., Flaherty, J.E., Özturan, C., Shephard, M.S., Szymanski, B.K., Teresco, J.D., Ziantz, L.H.: The quality of partitions produced by an iterative load balancer. In: Szymanski, B.K., Sinharoy, B. (eds.) Proc. Third Workshop on Languages, Compilers, and Runtime Systems, Troy, pp. 265–277 (1996)Google Scholar
  5. 5.
    Flaherty, J.E., Loy, R.M., Shephard, M.S., Szymanski, B.K., Teresco, J.D., Ziantz, L.H.: Adaptive local refinement with octree load-balancing for the parallel solution of threedimensional conservation laws. J. Parallel Distrib. Comput. 47, 139–152 (1997)CrossRefGoogle Scholar
  6. 6.
    Flaherty, J.E., Loy, R.M., Shephard, M.S., Teresco, J.D.: Software for the parallel adaptive solution of conservation laws by discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, S.W. (eds.) Discontinous Galerkin Methods Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 113–124. Springer, Berlin (2000)Google Scholar
  7. 7.
    Remacle, J.F., Flaherty, J., Shephard, M.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Review 45, 53–72 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Remacle, J.F., Shephard, M.S.: An algorithm oriented mesh database. Int. J. Numer. Meth. Engng. 58, 349–374 (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Musser, D.R., Saini, A., Stepanov, A.: STL Tutorial and Reference Guide: C++ Programming With the Standard Template Library. Addison-Wesley, Reading (1996)Google Scholar
  10. 10.
    Gropp, W., Lusk, E., Skjellum, A.: Using MPI. M. I. T. Press, Cambridge (1994)Google Scholar
  11. 11.
    Teresco, J.D., Beall, M.W., Flaherty, J.E., Shephard, M.S.: A hierarchical partition model for adaptive finite element computation. Comput. Methods Appl. Mech. Engrg. 184, 269–285 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable virtual organizations. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 1–25. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open grid services architecture for distributed systems integration (2002)Google Scholar
  14. 14.
    Szymanski, B., Varela, C., Cummings, J., Napolitano, J.: Dynamically reconfigurable scientific computing on large-scale heterogeneous grids. In: Wyrzykowski, R., et al. (eds.) Proc. Parallel Processing and Applied Mathematics, Czestochowa, Poland, Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Gosling, J., Joy, B., Steele, G.: The Java Language Specification. Addison Wesley, Reading (1996)zbMATHGoogle Scholar
  16. 16.
    Bull, J.M., Smith, L.A., Pottage, L., Freeman, R.: Benchmarking java against c and fortran for scientific applications. In: Proceedings of ACM Java Grande/ISCOPE Conference, pp. 97–105 (2001)Google Scholar
  17. 17.
    Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with SALSA. In: ACM SIGPLAN Notices. OOPSLA 2001 Intriguing Technology Track Proceedings, vol. 36, pp. 20–34 (2001),
  18. 18.
    Desell, T., ElMaghraoui, K., Varela, C.: Load balancing of autonomous actors over dynamic networks. To appear in Proceedings of the Hawaii International Conference On System Sciences, HICSS-37 (2004)Google Scholar
  19. 19.
    Vadhiyar, S.S., Dongarra, J.J.: Srs – a framework for developing malleable and migratable parallel applications for distributed systems (2002)Google Scholar
  20. 20.
    Wilkinson, B., Allen, M.: Parallel Programming. Prentice Hall, Englewood Cliffs (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kaoutar El Maghraoui
    • 1
  • Joseph E. Flaherty
    • 1
  • Boleslaw K. Szymanski
    • 1
  • James D. Teresco
    • 2
  • Carlos Varela
    • 1
  1. 1.Rensselaer Polytechnic InstituteTroyUSA
  2. 2.Williams CollegeWilliamstownUSA

Personalised recommendations