Solving Linear Recurrence Systems Using Level 2 and 3 BLAS Routines

  • Przemysław Stpiczyński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3019)


The aim of this paper is to present a new efficient BLAS-based algorithm for solving linear recurrence systems with constant coefficients, which can be easily and efficiently implemented on shared or distributed memory machines and clusters of workstations. The algorithm is based on level 3 and level 2 BLAS routines _GEMM, _GEMV and _TRMV, which are crucial for its efficiency even when the order of a system is relatively high. The results of experiments performed on a dual-processor Pentium III computer are also presented and discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Intel Fortran programmer’s manual,
  2. 2.
    Intel Math Kernel Library. reference manual,
  3. 3.
    Baker, A., Dennis, J., Jessup, E.R.: Toward memory-efficient linear solvers. In: Palma, J.M.L.M., Sousa, A.A., Dongarra, J., Hernández, V. (eds.) VECPAR 2002. LNCS, vol. 2565, pp. 238–315. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Bario, R., Melendo, B., Serrano, S.: On the numerical evaluation of linear recurrences. J. Comput. Appl. Math. 150, 71–86 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dongarra, J., Duff, I., Sorensen, D., Van der Vorst, H.: Solving Linear Systems on Vector and Shared Memory Computers. SIAM, Philadelphia (1991)Google Scholar
  6. 6.
    Dongarra, J., Hammarling, S., Sorensen, D.: Block reduction of matrices to condensed form for eigenvalue computations. J. Comp. Appl. Math 27, 215–227 (1989)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Larriba-Pey, J.L., Navarro, J.J., Jorba, A., Roig, O.: Review of general and Toeplitz vector bidiagonal solvers. Parallel Computing 22, 1091–1126 (1996)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Murli, A., Rizzardi, M.: Algorithm 682: Talbot’s method for the Laplace inversion problem. ACM Trans. Math. Soft. 16, 158–168 (1990)MATHCrossRefGoogle Scholar
  9. 9.
    Paprzycki, M., Stpiczyński, P.: Parallel solution of linear recurrence systems. Z. Angew. Math. Mech. 76, 5–8 (1996)MATHGoogle Scholar
  10. 10.
    Stoer, J., Bulirsh, R.: Introduction to Numerical Analysis, 2nd edn. Springer, New York (1993)MATHGoogle Scholar
  11. 11.
    Stpiczyński, P.: Parallel algorithms for solving linear recurrence systems. In: Bougé, L., Robert, Y., Trystram, D., Cosnard, M. (eds.) CONPAR 1992 and VAPP 1992. LNCS, vol. 634, pp. 343–348. Springer, Heidelberg (1992)Google Scholar
  12. 12.
    Stpiczyński, P.: Efficient data-parallel algorithms for computing trigonometric sums. Ann. Univ. Mariae Curie-Sklodowska Sect. A 56, 85–96 (2002)MATHMathSciNetGoogle Scholar
  13. 13.
    Stpiczyński, P.: Fast parallel algorithms for computing trigonometric sums. In: Tudruj, M., Jordan, A. (eds.) Proceedings of PARELEC 2002 – International Conference on Parallel Computing in Electrical Engineering, pp. 299–304. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  14. 14.
    Stpiczyński, P.: A new message passing algorithm for solving linear recurrence systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 466–473. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Van Der Vorst, H.A., Dekker, K.: Vectorization of linear recurrence relations. SIAM J. Sci. Stat. Comput. 16, 27–35 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Przemysław Stpiczyński
    • 1
  1. 1.Department of Computer ScienceMarie Curie–Skłodowska UniversityLublinPoland

Personalised recommendations