Minimizing Time-Dependent Total Completion Time on Parallel Identical Machines

  • Stanisław Gawiejnowicz
  • Wiesław Kurc
  • Lidia Pankowska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3019)


In the paper a problem of minimizing the total completion time for deteriorating jobs and parallel identical machines is considered. The processing time of each job is a linear function of the starting time of the job. The properties of an optimal schedule are proved and a greedy heuristic for the problem is proposed. Preliminary results of experimental evaluation of the algorithm are given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner, M.: Combinatorial theory. Springer, Heidelberg (1979)MATHGoogle Scholar
  2. 2.
    Alidaee, B., Womer, N.K.: Scheduling with time dependent processing times: Review and extensions. J. Optl Res. Soc. 50, 711–720 (1999)MATHGoogle Scholar
  3. 3.
    Chen, Z.-L.: Parallel machine scheduling with time dependent processing times. Discr. Appl. Math. 70, 81–93 (1996) Erratum: Discr. Appl. Math. 75, 103 (1996) MATHCrossRefGoogle Scholar
  4. 4.
    Cheng, T.C.E., Ding, Q., Lin, B.M.T.: A concise survey of scheduling with timedependent processing times. Euro. J. Optl. Res. 152, 1–13 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gawiejnowicz, S., Kurc, W., Pankowska, L.: A greedy approach for a timedependent scheduling problem. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 79–86. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Gawiejnowicz, S., Kurc, W., Pankowska, L., Suwalski, C.: Approximate solution of a time-dependent scheduling problem for lp-norm-based criteria. In: Fleischmann, B., et al. (eds.) Proceedings Operations Research, pp. 372–377. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Kononov, A.: Combinatorial complexity of scheduling jobs with simple linear deterioration. Discr. Anal. Oper. Res. 3(2), 15–32 (1996) (in Russian)MATHMathSciNetGoogle Scholar
  8. 8.
    Kononov, A.: Scheduling problems with linear processing times. In: Zimmermann, U., et al. (eds.) Proceedings Operations Research, pp. 208–212. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Kononov, A., Gawiejnowicz, S.: NP-hard cases in scheduling deteriorating jobs on dedicated machines. J. Optl. Res. Soc. 52, 708–717 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Mosheiov, G.: V-shaped policies to schedule deteriorating jobs. Oper. Res. 39(6), 979–991 (1991)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mosheiov, G.: Multi-machine scheduling with linear deterioration. Infor. 36, 205–214 (1998)Google Scholar
  12. 12.
    Mosheiov, G.: Complexity analysis of job-scheduling with deteriorating jobs. Discr. Appl. Math. 117, 195–209 (2002)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stanisław Gawiejnowicz
    • 1
  • Wiesław Kurc
    • 1
  • Lidia Pankowska
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations