Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application

  • Eduardo Huedo
  • Rubén S. Montero
  • Ignacio M. Llorente
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3019)


Grids provide a way to access the resources needed to execute the compute and data intensive applications required in the Bioinformatics field. However, in spite of the great research effort made in the last years, application development and execution in the Grid continue requiring a high level of expertise due to its heterogeneous and dynamic nature. In this paper, we show the procedure to adapt an existing Bioinformatics application to the Grid using the GridWay tool. The GridWay allows the efficient resolution of large computational experiments by reacting automatically to Grid- and application-generated dynamic events.


Protein Data Bank Fault Tolerance Grid Resource Globus Toolkit Bioinformatics Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl. J. of Supercomputer Applications 11, 115–128 (1997)CrossRefGoogle Scholar
  2. 2.
    Schopf, J.M.: Ten Actions when Superscheduling. Technical Report WD8.5, Global Grid Forum, Scheduling Working Group (2001)Google Scholar
  3. 3.
    Buyya, R., Abramson, D.: A Computational Economy for Grid Computing and its Implementation in the Nimrod-G Resource Broker. In: Future Generation Computer Systems, Elsevier Science, Amsterdam (2002) (to appear)Google Scholar
  4. 4.
    Berman, F., et al.: Adaptive Computing on the Grid Using AppLeS. IEEE Transactions on Parallel and Distributed Systems 14, 369–382 (2003)CrossRefGoogle Scholar
  5. 5.
    Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: An Architecture for a Resource Management and Scheduling System in a Global Computation Grid. In: Proceedings of the 4th IEEE Intl. Conference on High Performance Computing in Asia-Pacific Region (HPC Asia), Beijing, China (2000)Google Scholar
  6. 6.
    Wolski, R., Shao, G., Berman, F.: Predicting the Cost of Redistribution in Schedulling. In: Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Applications (1997)Google Scholar
  7. 7.
    Allen, G., et al.: The Cactus Worm: Experiments with Dynamic Resource Discovery and Allocation in a Grid Environment. Intl. Journal of High-Performance Computing Applications 15 (2001)Google Scholar
  8. 8.
    Vadhiyar, S., Dongarra, J.: A Performance Oriented Migration Framework for the Grid. In: Proceedings of the 3rd IEEE/ACM Intl. Symposium on Cluster Computing and the Grid, CCGrid (2003)Google Scholar
  9. 9.
    Huedo, E., Montero, R.S., Llorente, I.M.: An Experimental Framework for Executing Applications in Dynamic Grid Environments. Technical Report 2002-43, ICASE – NASA Langley, To appear in Intl. J. of Software – Practice and Experience (2002)Google Scholar
  10. 10.
    Montero, R.S., Huedo, E., Llorente, I.M.: Grid Resource Selection for Opportunistic Job Migration. In: Proceedings of Intl. Conf. on Parallel and Distributed Computing (EuroPar 2003). LNCS, Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Frey, J., et al.: Condor/G: A Computation Management Agent for Multi-Institutional Grids. In: Proceedings of the 10th IEEE Symposium on High Performance Distributed Computing, HPDC10 (2001)Google Scholar
  12. 12.
    Bastolla, U.: Sequence-Structure Alignments With the Protfinder Algorithm. In: Abstracts of Fifth Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (2002), Available at
  13. 13.
    Huedo, E., Montero, R.S., Llorente, I.M.: Experiences on Grid Resource Selection Considering Resource Proximity. In: Proceedings of 1st European Across Grids Conference (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Eduardo Huedo
    • 1
  • Rubén S. Montero
    • 2
  • Ignacio M. Llorente
    • 1
    • 2
  1. 1.Laboratorio de Computación Avanzada, Simulación y Aplicaciones TelemáticasCentro de Astrobiología (CSIC-INTA)Torrejón de ArdozSpain
  2. 2.Departamento de Arquitectura de Computadores y AutomáticaUniversidad ComplutenseMadridSpain

Personalised recommendations