Advertisement

Pegasus and the Pulsar Search: From Metadata to Execution on the Grid

  • Ewa Deelman
  • James Blythe
  • Yolanda Gil
  • Carl Kesselman
  • Scott Koranda
  • Albert Lazzarini
  • Gaurang Mehta
  • Maria Alessandra Papa
  • Karan Vahi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3019)

Abstract

This paper describes the Pegasus workflow mapping and planning system that can map complex workflows onto the Grid. In particular, Pegasus can be configured to generate an executable workflow based on application-specific attributes. In that configuration, Pegasus uses and AI-based planner to perform the mapping from high-level metadata descriptions to a workflow that can be executed on the Grid. This configuration of Pegasus was used in the context of the Laser Interferometer Gravitational Wave Observatory (LIGO) pulsar search. We conducted a successful demonstration of the system at SC 2002 during which time we ran approximately 200 pulsar searches.

Keywords

Gravitational Wave Grid Resource Virtual Data Pulsar Search Dynamic Replication Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Abramovici, A., et al.: LIGO: The Laser Interferometer Gravitational-Wave Observatory (in Large Scale Measurements). Science 256(5055), 325–333 (1992)CrossRefGoogle Scholar
  5. 5.
    Allcock, W., et al.: Data management and transfer in high performance computational grid environments. Parallel Computing Journal 28(5), 749–771 (2002a)CrossRefGoogle Scholar
  6. 6.
    Annis, J., et al.: Applying Chimera Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey. In: Supercomputing 2002. Baltimore, MD (2002)Google Scholar
  7. 7.
    Barish, B.C., Weiss, R.: LIGO and the Detection of Gravitational Waves. Physics Today 52(10), 44 (1999)CrossRefGoogle Scholar
  8. 8.
    Berman, F., Wolski, R., Figueira, S., Schopf, J., Shao, G.: Application-Level Scheduling on Distributed Heterogeneous Networks. In: Proceedings of Supercomputing 1996, Pittsburgh (1996)Google Scholar
  9. 9.
    Blythe, J., Deelman, E., Gil, Y., Kesselman, C.: Transparent grid computing: a knowledge-based approach. In: Innovative Applications of Artificial Intelligence Conference (2003)Google Scholar
  10. 10.
    Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Agarwal, A., Mehta, G., Vahi, K.: The role of planning in grid computing. In: International Conference on Automated Planning and Scheduling (2003)Google Scholar
  11. 11.
    Buyya, R., Abramson, D., Giddy, J.: An Economy Driven Resource Management Architecture for Global Computational Power Grids. In: The 2000 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2000), Las Vegas, USA (2000)Google Scholar
  12. 12.
    Casanova, H., et al.: Heuristics for Scheduling Parameter Sweep Applications in Grid environments. In: 9th Heterogeneous Computing Workshop (HCW 2000), Cancun, Mexico (2000)Google Scholar
  13. 13.
    Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., Kesselman, C., Kunst, P., Ripeanu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K., Tierney, B., Giggle: A framework for constructing scalable replica location services. In: Proceedings of Supercomputing 2002 (SC2002) (November 2002)Google Scholar
  14. 14.
    Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for distributed resource sharing. In: Proceedings of the 10th IEEE 5’gmposium on High-Performance Distributed Computing (August 2001)Google Scholar
  15. 15.
    Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W., Tuecke, S.: A Resource Management Architecture for Metasystems. Lecture Notes on Computer Sciencen (1998)Google Scholar
  16. 16.
    Deelman, E., Blythe, J., Gil, Y., Kesselman, C.: Grid Resource Management, chapter Workflow Management in GriPhyN. Kluwer, Dordrecht (2003)Google Scholar
  17. 17.
    Deelman, E., et al.: GriPhyN and LIGO, Building a Virtual Data Grid for Gravitational Wave Scientists. In: 11th Intl Symposium on High Performance Distributed Computing (2002)Google Scholar
  18. 18.
    Deelman, E., et al.: Mapping abstract complex workflows onto grid environments. Journal of Grid Computing 1(1) (2003)Google Scholar
  19. 19.
    Deelman, E., Kesselman, C., Mehta, G.: Transformation Catalog Design for GriPhyN. GriPhyN technical report 2001-17 (2001)Google Scholar
  20. 20.
    Foster, I., et al.: Chimera: A Virtual Data System for Representing, Querying, and Automating Data Derivation. Scientific and Statistical Database Management (2002)Google Scholar
  21. 21.
    Frey, J., et al.: Condor-G: A Computation Management Agent for Multi-Institutional Grids. In: 10th International Symposium on High Performance Distributed Computing, IEEE Press, Los Alamitos (2001)Google Scholar
  22. 22.
    Keyani, P., Sample, N., Wiederhold, G.: Scheduling Under Uncertainty: Planning for the Ubiquitous Grid. Stanford Database GroupGoogle Scholar
  23. 23.
    Ranganathan, K., Foster, I.: Design and Evaluation of Dynamic Replication Strategies for a High Performance Data Grid. In: International Conference on Computing in High Energy and Nuclear Physics (2001)Google Scholar
  24. 24.
    Ranganathan, K., Foster, I.: Identifying Dynamic Replication Strategies for a High-Performance Data Grid. In: Proceedings of the Second International Workshop on Grid Computing (2001)Google Scholar
  25. 25.
    Ranganathan, K., Foster, I.: Decoupling Computation and Data Scheduling in Distributed Data Intensive Applications. In: International Symposium for High Performance Distributed Computing (HPDC-11), Edinburgh (2002)Google Scholar
  26. 26.
    Singh, G., et al.: A Metadata Catalog Service for Data Intensive Applications. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, Springer, Heidelberg (2003)Google Scholar
  27. 27.
    Veloso, M., Carbonell, J., et al.: Integrating planning and learning: The prodigy architecture. Journal of Experimental and Theoretical AI 7, 81–120 (1995)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ewa Deelman
    • 3
  • James Blythe
    • 3
  • Yolanda Gil
    • 3
  • Carl Kesselman
    • 3
  • Scott Koranda
    • 4
  • Albert Lazzarini
    • 2
  • Gaurang Mehta
    • 3
  • Maria Alessandra Papa
    • 1
  • Karan Vahi
    • 3
  1. 1.Albert Einstein InstituteGolmGermany
  2. 2.CaltechPasadenaUSA
  3. 3.USC Information Sciences InstituteMarina Del ReyUSA
  4. 4.University of Wisconsin MilwaukeeMilwaukeeUSA

Personalised recommendations