Advertisement

Measuring BGP Pass-Through Times

  • Anja Feldmann
  • Hongwei Kong
  • Olaf Maennel
  • Alexander Tudor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3015)

Abstract

Fast routing convergence is a key requirement for services that rely on stringent QoS. Yet experience has shown that the standard inter-domain routing protocol, BGP4, takes, at times, more than one hour to converge. Previous work has focused on exploring if this stems from protocol interactions, timers, etc. In comparison only marginal attention has been payed to quantify the impact of individual router delays on the overall delay. Salient factors, such as CPU load, number of BGP peers, etc., may help explain unusually high delays and as a consequence BGP convergence times. This paper presents a methodology for studying the relationship between BGP pass-through times and a number of operationally important variables, along with some initial results. Our results suggest that while pass-through delays under normal conditions are rather small, under certain conditions, they can be a major contributing factor to slow convergence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed Internet routing convergence. In: Proc. ACM SIGCOMM (2000)Google Scholar
  3. 3.
    Griffin, T.G., Wilfong, G.: An analysis of BGP convergence properties. In: Proc. ACM SIGCOMM (1999)Google Scholar
  4. 4.
    Labovitz, C.: Scalability of the Internet backbone routing infrastructure, in PhD Thesis, University of Michigan (1999) Google Scholar
  5. 5.
    Wetherall, D., Mahajan, R., Anderson, T.: Understanding BGP misconfigurations. In: Proc. ACM SIGCOMM (2002)Google Scholar
  6. 6.
    Mao, Z.M., Varghese, G., Govindan, R., Katz, R.: Route flap damping exacerbates Internet routing convergence. In: Proc. ACM SIGCOMM (2002)Google Scholar
  7. 7.
    Griffin, T., Premore, B.J.: An experimental analysis of BGP convergence time. In: Proc. International Conference on Network Protocols (2001)Google Scholar
  8. 8.
    Mao, Z.M., Bush, R., Griffin, T., Roughan, M.: BGP beacons. In: Proc. Internet Measurement Conference (2003)Google Scholar
  9. 9.
    Berkowitz, H., Davies, E., Hares, S., Krishnaswamy, P., Lepp, M.: Terminology for benchmarking bgp device convergence in the control plane (2003) Internet Draft (draft-ietf-bmwg-conterm-05.txt) Google Scholar
  10. 10.
    Agarwal, S., Chuah, C.-N., Bhattacharyya, S., Diot, C.: Impact of BGP dynamics on router CPU utilization. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 278–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Rekhter, Y., Li, T.: A Border Gateway Protocol 4 (BGP-4). RFC 1771 (1995)Google Scholar
  12. 12.
    ENDACE measurement systems, http://www.endace.com/
  13. 13.
    RIPE’s Routing Information Service Raw Data Page, http://data.ris.ripe.net/
  14. 14.
    Maennel, O., Feldmann, A.: Realistic bgp traffic for test labs. In: Proc. ACM SIGCOMM (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Anja Feldmann
    • 1
  • Hongwei Kong
    • 2
  • Olaf Maennel
    • 1
  • Alexander Tudor
    • 3
  1. 1.Technische Universität MünchenGermany
  2. 2.Agilent LabsBeijingChina
  3. 3.Agilent LabsPalo AltoUSA

Personalised recommendations