Customer Behavior Pattern Discovering with Web Mining

  • Xiaolong Zhang
  • Wenjuan Gong
  • Yoshihiro Kawamura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3007)


This paper describes a real application proven web mining approach. The approach performs with integrated data comprised of web logs and customer information involved in e-commerce web sites. The objective is to acquire behavior patterns of visitors on web sites. The mining tasks include the customer clustering, association rules among the web pages of visitor traffic, buying patterns of customers, and predict model generation for the potential customers. As web log data is very extraneous, low granularity and voluminous, a semantic taxonomy method is used to group web pages, helping address the discovered patterns. This web mining work is useful for an enterprise to have a multi-level customer view, which prompts decision-making process of the enterprise.


Data mining web log analysis e-commerce CRM (customer relationship management) business intelligence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wu, K.L., Yu, P.S., Ballman, A.: Speedtrace: A web usage mining and analysis tool. IBM System Journal 37, 89–104 (1998)CrossRefGoogle Scholar
  2. 2.
    Coolry, R., Mobasher, B., Srivastava, J.: Data preparation for mining World Wide Web browing patterns. Knowledge and Information Systems 1, 5–32 (1999)Google Scholar
  3. 3.
    Pei, J., Han, J., Mortazavi-asl, B., Zhu, H.: Mining access patterns efficiently from web logs. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Agrawal, R., Imielinski, I., Swami, A.: Mining associations between sets of items in massive databases. In: Proc. of the ACM-SIGMOD 1993 Int’l Conference on Management of Data. Washington D.C (1993)Google Scholar
  5. 5.
    Agrawal, R., Srikant, J.: Mining squential patterns: Generalizations and performance improvements. In: Proc. of the Fifth Int’l Conference on Extending Database Technology, Avigno, France (1996)Google Scholar
  6. 6.
    Kohonen, T.: The self-organization map. Proceedings of the IEEE 78, 1464–1480 (1990)CrossRefGoogle Scholar
  7. 7.
    Michalski, R.S., Stepp, R.: Learning from observation: Conceptual clustering. In: Machine Learning: An Artificial Intelligence Approach, Morgan Kaufmann, San Francisco (1983)Google Scholar
  8. 8.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  9. 9.
    Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: A fast scalable classifier for data mining. In: Proc. of the Fifth Int’l Conference on Extending Database Technology, Avignon, France, Morgan Kaufmann, San Francisco (1996)Google Scholar
  10. 10.
    Zell, A., Mamier, G., et al.: SNNS: Stuttgart neural network simulator. Version 4.1 (1995), also (
  11. 11.
    Ji, J., Zhang, L., Liu, C.: The intelligent electronic shopping system based on bayesian clustering modeling. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS (LNAI), vol. 2198, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Estivill-Castro, V., Yang, J.: Categorizing vistors dynamically by fast and robust clustering of access logs. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS (LNAI), vol. 2198, p. 498. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Xiaolong Zhang
    • 1
  • Wenjuan Gong
    • 2
  • Yoshihiro Kawamura
    • 3
  1. 1.School of Computer Science and TechnologyWuhan University of Science and Technology 
  2. 2.Dept. of Educational AdministrationWuhan University of Science and Technology 
  3. 3.Business Intelligence Solutions, IBMJapan

Personalised recommendations