Advertisement

WIEAS: Helping to Discover Web Information Sources and Extract Data from Them

  • Liyu Li
  • Shiwei Tang
  • Dongqing Yang
  • Tengjiao Wang
  • Zhihong Deng
  • Zhihua Su
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3007)

Abstract

In recent years, more and more information appeared on the web. Extracting information from the web and converting them into regular format become significantly important work. After observing a number of web sites, we found that most of useful information is contained in the web sources, which have a large number of similarly structured web documents. So in this paper we present an approach for discovering the useful information sources from the web and extracting information from them. A useful web information source discovering method and a novel information extraction method are proposed. We also develop a prototype system WIEAS (Web Information Extraction, Analysis And Services) to implement our idea, and use the information extracted by WIEAS to provide plentiful services.

Keywords

Information Extraction Clustering Edit Distance Wrapper XPath 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashish, N., Knoblock, C.: Semi-automatic Wrapper Generation for Internet Information Sources. In: Proceedings of the IFCIS International Conference on Cooperative Information Systems, CoopIS, pp. 160–169 (1997)Google Scholar
  2. 2.
    Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with Lixto. In: Proc. of VLDB, pp. 119–128 (2001)Google Scholar
  3. 3.
    Crescenzi, W., Mecca, G., Merialdo, P.: RoadRunner: Towards Automatic Data Extraction from Large Web Sites. In: Proc of VLDB, pp. 109-118 (2001)Google Scholar
  4. 4.
    Freitag, D., McCallum, A.: Information extraction with hmms and shrinkage. In: Proc. of the AAAI 1999 Workshop on Machine Learning for Information Extraction, pp. 31- 36 (1999)Google Scholar
  5. 5.
    Freitag, D., Kushmerick, N.: Boosted Wrapper Induction. In: Proc. of the 17th AAAI, pp. 577-583 (2000)Google Scholar
  6. 6.
    Kosala, R., Bruynooghe, M., Blockeel, H., Van den Bussche, J.: Information Extraction by Means of Generalized k-testable Tree Automata Inference Algorithm. In: Proc. of the 4th iiWAS, pp. 105–109 (2002)Google Scholar
  7. 7.
    Kosala, R., Van den Bussche, J., Bruynooghe, M., Blockeel, H.: Information Extraction in Structured Documents using Tree Automata Induction. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, p. 299. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Kosala, R., Bruynooghe, M., Blockeel, H., Van den Bussche, J.: Information Extraction from web documents based on local unranked tree automaton inference. In: Proc. of IJCAI, pp. 403-408 (2003)Google Scholar
  9. 9.
    Li, L., Tang, S., Yang, D., Wang, T., Su, Z.: EGA: An Algorithm for Automatic Semi-Structured Web Documents Extraction. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 787–798. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Liu, L., Pu, C., Han, W.: XWRAP: An XML-enabled Wrapper Construction System for Web Information Sources. In: Proc. of ICDE, pp. 611-621 (2000)Google Scholar
  11. 11.
    Kushmerick, N.: Wrapper Induction: Efficiency and Expressiveness. Artificial Intelligence Journal 118(1-2), 15–68 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nierman, A., Jagadish, H.V.: Evaluating Structural Similarity in XML Documents. In: Proc. of WebDB, pp. 61-66 (2002)Google Scholar
  13. 13.
    Sahuguet, A., Azavant, F.: Building Intelligent Web Applications Using Lightweight Wrappers. Data and Knowledge Engineering 36(3), 283–316 (2001)MATHCrossRefGoogle Scholar
  14. 14.
    Wang, T., Tang, S., Yang, D., et al.: COMMIX: Towards Effective Web Information Extraction, Integration and Query Answering. In: Proc of SIGMOD, p. 620 (2002)Google Scholar
  15. 15.
    Wang, T., Tang, S., Yang, D.: Extracting Local Schema from Semistructured Data Based on Graph-Oriented Semantic Model. Journal of Computer Science and Technology 16(6), 560–566 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Liyu Li
    • 1
  • Shiwei Tang
    • 1
    • 2
  • Dongqing Yang
    • 2
  • Tengjiao Wang
    • 2
  • Zhihong Deng
    • 1
  • Zhihua Su
    • 2
  1. 1.National Laboratory On Machine PerceptionPeking UniversityBeijingChina
  2. 2.Computer Science DepartmentPeking UniversityBeijingChina

Personalised recommendations