Multiple-Time Signature Schemes against Adaptive Chosen Message Attacks

  • Josef Pieprzyk
  • Huaxiong Wang
  • Chaoping Xing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3006)


Multiple-time signatures are digital signature schemes where the signer is able to sign a predetermined number of messages. They are interesting cryptographic primitives because they allow to solve many important cryptographic problems, and at the same time offer substantial efficiency advantage over ordinary digital signature schemes like RSA. Multiple-time signature schemes have found numerous applications, in ordinary, on-line/off-line, forward-secure signatures, and multicast/stream authentication. We propose a multiple-time signature scheme with very efficient signing and verifying. Our construction is based on a combination of one-way functions and cover-free families, and it is secure against the adaptive chosen-message attack.


  1. 1.
    Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bos, J.N.E., Chaum, D.: Provably unforgeable signature. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 1–14. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Bellare, M., Micali, S.: How to sign given any trapdoor function. Journal of Cryptology 39, 214–233 (1992)MathSciNetMATHGoogle Scholar
  4. 4.
    Bellare, M., Miner, S.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Ballare, M., Neven, S.G.: Transitive signatures based on factoring and RSA. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 314–397. Springer, Heidelberg (2002)Google Scholar
  6. 6.
    Bleichenbacher, D., Maurer, U.: Directed acyclic graphs, one-way functions and digital signatures. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 75–82. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Bleichenbacher, D., Maurer, U.: On the efficiency of one-time digital signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 145–158. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Bleichenbacher, D., Maurer, U.: Optimal tree-based one-time digital signature schemes. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 363–374. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Coppersmith, D., Jakobsson, M.: Almost optimal hash sequence traversal. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, Springer, Heidelberg (2003) (to appear)CrossRefGoogle Scholar
  10. 10.
    Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and its applications. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 234–246. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Erdös, P., Frankl, P., Furedi, Z.: Families of finite sets in which no set is covered by the union of r others. Israel Journal of Mathematics 51, 79–89 (1985)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. Journal of Cryptology 9, 35–67 (1996)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17, 281–308 (1988)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Hevia, A., Micciancio, D.: The provable security of graph-based one-time signatures and extensions to algebraic signature schemes. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 379–396. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Hu, Y.-C., Perrig, A., Johnson, D.B.: Packet Leashes: A defense against wormhole attacks in wireless Ad Hoc Networks. In: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2003 (2003)Google Scholar
  16. 16.
    Jakobsson, M.: Fractal hash sequence representation and traversal. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT 2002), pp. 437–444 (2002)Google Scholar
  17. 17.
    Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklist in problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)Google Scholar
  18. 18.
    Lamport, L.: Constructing digital signatures from a one way function, Technical Report CSL-98, SRI International (1979)Google Scholar
  19. 19.
    Lamport, L.: Password authentication with insecure communication. Communication of the ACM 24(11), 770–772 (1981)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Merkle, R.C.: A digital signature based on a conventional function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)Google Scholar
  21. 21.
    Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
  22. 22.
    Niederreiter, H., Xing, C.P.: Rational Points on Curves over Finite Fields: Theory and Applications. Cambridge University Press, Cambridge (2001), LMS 285MATHGoogle Scholar
  23. 23.
    Perrig, A.: The BiBa one-time signature and broadcast authentication. In: Eighth ACM Conference on Computer and Communication Security, pp. 28–37. ACM, New York (2001)CrossRefGoogle Scholar
  24. 24.
    Rabin, M.O.: Digitalized signatures, Foundations of Secure Communication, pp. 155–168. Academic Press, London (1978)Google Scholar
  25. 25.
    Reyzin, L., Reyzin, N.: Better than BiBa: Short one -time signatures with fast signing and verifying. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 144–153. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Rivest, R., Shamir, A.: PayWord and MicroMint: two simple micro payment schemes, Tech. Rep., MIT Lab. for Computer Science (1996)Google Scholar
  27. 27.
    Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet authentication. In: 6th ACM conference on Computer and Communication Security, pp. 93–100 (1999)Google Scholar
  28. 28.
    Stichtenoth, H.: Algebraic function fields and codes. Springer, Berlin (1993)MATHGoogle Scholar
  29. 29.
    Stinson, D.R.: Cryptography: theory and practice. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  30. 30.
    Stinson, D.R., Wei, R., Zhu, L.: Some new bounds for cover-free families. Journal of Combinatorial Theory, A 90, 224–234 (2000)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Josef Pieprzyk
    • 1
  • Huaxiong Wang
    • 2
  • Chaoping Xing
    • 3
  1. 1.Centre for Advanced Computing – Algorithms and Cryptography Department of ComputingMacquarie UniversityAustralia
  2. 2.Department of MathematicsNational University of SingaporeSingapore
  3. 3.Department of MathematicsUniversity of Science and Technology of ChinaChina

Personalised recommendations