An Improved Grammatical Evolution Strategy for Hierarchical Petri Net Modeling of Complex Genetic Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3005)


DNA sequence variations impact human health through a hierarchy of biochemical and physiological systems. Understanding the hierarchical relationships in the genotype-phenotype mapping is expected to improve the diagnosis, prevention, and treatment of common, complex human diseases. We previously developed a hierarchical dynamic systems approach based on Petri nets for generating biochemical network models that are consistent with genetic models of disease susceptibility. This strategy uses an evolutionary computation approach called grammatical evolution for symbolic manipulation and optimization of Petri net models. We previously demonstrated that this approach routinely identifies biochemical network models that are consistent with a variety of complex genetic models in which disease susceptibility is determined by nonlinear interactions between two DNA sequence variations. However, the modeling strategy was generally not successful when extended to modeling nonlinear interactions between three DNA sequence variations. In the present study, we evaluate a modified grammar for building Petri net models of biochemical systems that are consistent with high-order genetic models of disease susceptibility. The results indicate that our hierarchical model-building approach is capable of identifying perfect Petri net models when an appropriate grammar is used.


Genetic Model Production Rule Multifactor Dimensionality Reduction Grammatical Evolution Penetrance Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bateson, W.: Mendel’s Principles of Heredity. Cambridge University Press, Cambridge (1909)Google Scholar
  2. 2.
    Wright, S.: The role of inbreeding, crossbreeding and selection in evolution. In: Proceedings of the 6th international Congress on Genetics, vol. 1, pp. 356–366 (1932)Google Scholar
  3. 3.
    Wright, S.: Physiological and evolutionary theories of codominance. American Naturalist 68, 25–53 (1934)Google Scholar
  4. 4.
    Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Human Heredity 56, 73–82 (2003)CrossRefGoogle Scholar
  5. 5.
    Moore, J.H., Williams, S.M.: New strategies for identifying gene-gene interactions in hypertension. Annals of Medicine 34, 88–95 (2002)CrossRefGoogle Scholar
  6. 6.
    Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Plummer, W.D., Parl, F.F., Moore, J.H.: Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. American Journal of Human Genetics 69, 138–147 (2001)CrossRefGoogle Scholar
  7. 7.
    Ritchie, M.D., Hahn, L.W., Moore, J.H.: Power of multifactor dimensionality reduction for detecting gene-gene and gene-environment interactions. Genetic Epidemiology 24, 150–157 (2003)CrossRefGoogle Scholar
  8. 8.
    Hahn, L.W., Ritchie, M.D., Moore, J.H.: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19, 376–382 (2003)CrossRefGoogle Scholar
  9. 9.
    Moore, J.H., Hahn, L.W.: Grammatical evolution for the discovery of Petri net models of complex genetic systems. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2412–2413. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Moore, J.H., Hahn, L.W.: Evaluation of a discrete dynamic systems approach for modeling the hierarchical relationship between genes, biochemistry, and disease susceptibility. Discrete and Continuous Dynamical Systems: Series B 4, 275–287 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Moore, J.H., Hahn, L.W.: Petri net modeling of high-order genetic systems using grammatical evolution. BioSystems 72, 177–186 (2003)CrossRefGoogle Scholar
  12. 12.
    Moore, J.H., Hahn, L.W., Ritchie, M.D., Thornton, T.A., White, B.C.: Application of genetic algorithms to the discovery of complex genetic models for simulation studies in human genetics. In: Langdon, W.B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  13. 13.
    Desel, J., Juhas, G.: What is a Petri net? In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2128, pp. 1–27. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Goss, P.J., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. In: Proceedings of the National Academy of Sciences USA, vol. 95, pp. 6750–6755 (1998)Google Scholar
  15. 15.
    Falconer, D.S., Mackay, T.F.C.: Introduction to Quantitative Genetics, 4th edn. Longman, Essex (1996)Google Scholar
  16. 16.
    Fogel, L.J.: Autonomous automata. Industrial Research 4, 14–19 (1962)Google Scholar
  17. 17.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley, New York (1966)zbMATHGoogle Scholar
  18. 18.
    Rechenberg, I.: Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Farnborough, U.K., Library Translation No. 1122 (1965)Google Scholar
  19. 19.
    Schwefel, H.-P.: Kybernetische Evolution als Strategie der experimentellen Forschung in der Stromungstechnik. Diploma Thesis, Technical University of Berlin (1965)Google Scholar
  20. 20.
    Holland, J.H.: Adaptive plans optimal for payoff-only environments. In: Proceedings of the 2nd Hawaii International Conference on Systems Sciences, pp. 917–920. University of Hawaii, Honolulu (1969)Google Scholar
  21. 21.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  22. 22.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  23. 23.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  24. 24.
    Koza, J.R., Mydlowec, W., Lanza, G., Yu, J., Keane, M.A.: Reverse engineering of metabolic pathways from observed data using genetic programming. In: Pacific Symposium on Biocomputing, vol. 6, pp. 434–445 (2001)Google Scholar
  25. 25.
    Kitagawa, J., Iba, H.: Identifying metabolic pathways and gene regulation networks with evolutionary algorithms. In: Fogel, G.B., Corne, D.W. (eds.) Evolutionary Computation and Bioinformatics, pp. 255–278. Morgan Kaufmann Publishers, San Francisco (2003)CrossRefGoogle Scholar
  26. 26.
    O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computation 5, 349–358 (2001)CrossRefGoogle Scholar
  27. 27.
    Marcotty, M., Ledgard, H.: The World of Programming Languages. Springer, Berlin (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Center for Human Genetics Research, Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleUSA

Personalised recommendations