Tilings of Sequences of Co-evolved Images

  • Gary Greenfield
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3005)

Abstract

Sims’ well-known technique for using evolving expressions to generate abstract images is paired with a co-evolutionary hosts and parasites fitness scheme to instantiate an evolutionary simulation. An added twist is that image populations are completely replaced after each generation. The goal is to identify evolutionary epochs where significant aesthetic themes emerge so that sequences of maximally fit images can be culled. Culled sequences are used to construct tilings. The technique yields abstract tilings where the interplay between creation, competition, and cooperation of visual themes combine to produce some surprising aesthetic results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connection Science 6, 325–354 (1994)CrossRefGoogle Scholar
  2. 2.
    Bedwell, E., Ebert, D.: Artificial evolution for implicit surfaces. In: Conference Abstracts and Applications, Computer Graphics Annual Conference Series, Association for Computing Machinery, New York, NY, p. 261 (1998)Google Scholar
  3. 3.
    Dawkins, R.: The evolution of evolvability, Artificial Life. In: Langton, C. (ed.), pp. 201–220. Addison-Wesley, Reading (1989)Google Scholar
  4. 4.
    Graf, J., Banzhaf, W.: Interactive evolution of images. In: McDonnell, J., et al. (eds.) Genetic Programming IV: Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 53–65. MIT Press, Cambridge (1995)Google Scholar
  5. 5.
    Greenfield, G.: Art and artificial life — a coevolutionary approach. In: Bedau, M., et al. (eds.) Artificial Life VII Conference Proceedings, pp. 529–536. MIT Press, Cambridge (2000)Google Scholar
  6. 6.
    Greenfield, G.: Mathematical building blocks for evolving expressions. In: Sarhangi, R. (ed.) 2000 Bridges Conference Proceedings, Central Plain Book Manufacturing, Winfield, KS, pp. 61–70 (2000)Google Scholar
  7. 7.
    Hillis, D.: Co-evolving parasites improves simulated evolution as an optimization procedure. In: Langton, C., et al. (eds.), Artificial Life II, pp. 313–324. Addison-Wesley, Reading (1991)Google Scholar
  8. 8.
    Hitchcock, N.: Painting pictures through time. Computer Artist (December/ January 1996) Google Scholar
  9. 9.
    Ibrahim, A.: GenShade, Ph.D. Dissertation, Texas A&M University (1998)Google Scholar
  10. 10.
    Lewis, M.: Creating continuous design spaces using interactive genetic algorithms with layered, correlated, pattern functions. Ph.D. Dissertation, Ohio State University (2001)Google Scholar
  11. 11.
    Machado, P., Cardoso, A.: Computing aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–229. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    McGuire, F.: The origins of sculpture: evolutionary 3D design. IEEE Computer Graphics & Applications, 9–12 (January 1993)Google Scholar
  13. 13.
  14. 14.
  15. 15.
    Rooke, S.: Personal communicationGoogle Scholar
  16. 16.
    Rowbottom, A.: Evolutionary art and form. In: Bentley, P. (ed.), Evolutionary Design by Computers, pp. 261–277. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  17. 17.
    Sims, K.: Artificial evolution for computer graphics. Computer Graphics 25, 319–328 (1991)CrossRefGoogle Scholar
  18. 18.
    Sims, K.: Interactive evolution of dynamical systems. In: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 171–178. MIT Press, Cambridge (1991)Google Scholar
  19. 19.
    Sprott, J.: The computer artist and art critic. In: Pickover. C. (ed.), Fractal Horizons, pp. 77–115 (1996)Google Scholar
  20. 20.
    Staudek, T.: Computer-aided aesthetic evaluation of visual patterns. In: Barrallo, J., et al. (eds.) ISAMA/Bridges 2003 Conference Proceedings, University of Granada, Granada, Spain, pp. 143–150 (2003)Google Scholar
  21. 21.
    Thomas, D.: Aesthetic selection of developmental art forms. In: Standish, R., et al. (eds.) Artificial Live VIII Conference Proceedings, pp. 157–163. MIT Press, Cambridge (2003)Google Scholar
  22. 22.
    Todd, S., Latham, W.: Evolutionary Art and Computers, Academic Press, San Diego (1992)Google Scholar
  23. 23.
    Unemi, T.: SBART 2.4: an IEC tool for creating two-dimensional images, movies, and collages. Leonardo 35, 189–192 (2002)CrossRefGoogle Scholar
  24. 24.
    Voss, D.: Sex is best. WIRED, December 1995, pp. 156–157 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gary Greenfield
    • 1
  1. 1.Mathematics & Computer ScienceUniversity of RichmondRichmondUSA

Personalised recommendations