Advertisement

Using Genetic Programming for Character Discrimination in Damaged Documents

  • Daniel Rivero
  • Juan R. Rabuñal
  • Julián Dorado
  • Alejandro Pazos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3005)

Abstract

This paper presents an application of Genetic Programming (GP) to solve one problem in the field of image processing. This problem is the recovery of a deteriorated old document from the damages caused by centuries. This document was affected by many aggresive agents, mainly by the humidity caused by a wrong storage during many years. This makes this problem particularly hard and unaffordable by other image processing techniques. Recent works have shown how Genetic Algorithms is a technique suitable for this task, but in this paper it will be shown how to obtain better results with GP.

Keywords

Window Size Genetic Programming Image Processing Technique Evolutionary Computing Noisy Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castleman, K.R.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  2. 2.
    Russ, J.C.: The Image Processing Handbook, 3rd edn. CRC Press LLC, Boca Raton (1999)MATHGoogle Scholar
  3. 3.
    Koza, J.: Genetic Programming. In: On the Programming of Computers by means of Natural Selection, The MIT Press, Cambridge (1992)Google Scholar
  4. 4.
    Darwin, C.: On the Origin of Species by means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life, 6th edn. Cambridge University Press, Cambridge (1864) (originally published in 1859)Google Scholar
  5. 5.
    Fuchs, M.: Crossover Versus Mutation: An Empirical and Theoretical Case Study. In: 3rd Annual Conference on Genetic Programming, Morgan Kaufmann, San Francisco (1998)Google Scholar
  6. 6.
    Luke, S., Spector, L.: A Revised Comparison of Crossover and Mutation in Genetic Programming. In: 3rd Annual Conference on Genetic Programming, Morgan Kaufmann, San Francisco (1998)Google Scholar
  7. 7.
    Dorado, J., Rabuñal, J. R., Puertas, J., Santos, A., Rivero, D.: Prediction and Modelling of the Flor of a Typical Urban Basin Through Genetic Programming. In: Applications of Evolutionary Computing. Proceedings of EvoWorshops2002: EvoCOP, AvoIASP, EvoSTIM/EvoPLAN (2002)Google Scholar
  8. 8.
    Rabuñal, J.R., Dorado, J., Puertas, J., Pazos, A., Santos, A., Rivero, D.: Prediction and Modelling of the Rainfall-Runoff Transformation of a Typical Urban Basin using ANN and GP. Applied Artificial Intelligence (2003)Google Scholar
  9. 9.
    Howard, D., Roberts, S.C.: A Staged Genetic Programming Strategy for Image Analysis. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1047–1052 (1999)Google Scholar
  10. 10.
    Quintana, M.I., Poli, R., Claridge, C.: On Two Approaches to Image Processing Algorithm Design for Binary Images Using GP, Applications of Evolutionary Computing. In: Proceedings of EvoWorkshops2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM (2003)Google Scholar
  11. 11.
    Howard, D., Roberts, S.C.: The Boru Data Crawler for Object Detection Tasks in Machine Vision, Applications of Evolutionary Computing. In: Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP, EvoSTim/EvoPLAN, pp. 222–232 (2002)Google Scholar
  12. 12.
    Poli, R., Langdon, W.B.: Sub-machine-code Genetic Programming. In: Spector, L., O’Reilly, U.M., Langdon, W.B., Angeline, P.J. (eds.) Advances in Genetic Programming, 3, ch.13, pp. 301–323. MIT Press, Cambridge (1999)Google Scholar
  13. 13.
    Poli, R.: Sub-Machine-code GP: New results and extensions. In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 65–82. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Adorni, G., Cagnoni, S., Gori, M., Mordonini, M.: Efficient low-resolution character recognition using sub-machine-code genetic programming. In: WILF 2001 (2002)Google Scholar
  15. 15.
    Adorni, G., Cagnoni, S., Mordonini, M.: Efficient low-level vision program design using sub-machine-code genetic programming. In:Workshop sulla Percezione e Visione nelle Macchine (2002), available at citeseer.nj.nec.com/539182.html
  16. 16.
    Adorni, G., Cagnoni, S.: Design of explicitly or implicitly parallel low-resolution character recognition algorithms by means of genetic programming. In: Roy, R., Koppen, M., Ovaska, S., Furuhashi, T., Hoffmann, F. (eds.) Soft Computing and Industry: Recent Applications (Proc. 6th Online Conference on Soft Computing), pp. 387–398. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Quintana, M.I., Poli, R., Claridge, E.: On Two Approaches to Image Processing Algorithm Design for Binary Images Using GP. In: Applications of Evolutionary Computing, Proceedings of EvoWorkshops2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM, pp. 422–431 (2003) Google Scholar
  18. 18.
    Hwang, W., Chang, H.: Character Extraction from Documents using Wavelet Maxima. Image and Vision Computing 16(5), 307–315 (1998)CrossRefGoogle Scholar
  19. 19.
    Negishi, H., Kato, J., Hase, H., Watanabe, T.: Character Extraction from Noisy Background for an Automatic Reference System. In: Proceedings of the Fifth International Conference on Document Analysis and Recognition, Bangalore, India, 20-22 September (1999)Google Scholar
  20. 20.
    Vidal, R.: Old Text Reconstruction: An Artificial Intelligence Approach, Graduate Thesis, Facultad de Informática, Universidade da Coruña (1999)Google Scholar
  21. 21.
    Rivero, D., Vidal, R., Dorado, J., Rabuñal, J.R., Pazos, A.: Restoration of Old Documents with Genetic Algorithms. In: Applications of Evolutionary Computing, Proceedings of EvoWorkshops2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Daniel Rivero
    • 1
  • Juan R. Rabuñal
    • 1
  • Julián Dorado
    • 1
  • Alejandro Pazos
    • 1
  1. 1.Fac. InformaticaUniv. A CoruñaA CoruñaSpain

Personalised recommendations