Ant Colony Optimization for the Maximum Edge-Disjoint Paths Problem

  • Maria Blesa
  • Christian Blum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3005)


Given a graph G representing a network topology, and a collection T={(s 1,t 1)...(s k ,t k )} of pairs of vertices in G representing connection request, the maximum edge-disjoint paths problem is an NP-hard problem which consists in determining the maximum number of pairs in T that can be routed in G by mutually edge-disjoint s i -t i paths. We propose an Ant Colony Optimization (aco) algorithm to solve this problem. aco algorithms are inspired by the foraging behavior of real ants, whose distributed nature makes them suitable for the application in network environments. Our current version is aimed for the application in static graphs. In comparison to a multi-start greedy approach, our algorithm has advantages especially when speed is an issue.


Disjoint Path Connection Request Greedy Approach Simple Greedy Algorithm Pheromone Information 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karp, R.: Reducibility among combinatorial problems. In: Compexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)Google Scholar
  2. 2.
    Awerbuch, B., Gawlick, R., Leighton, F., Rabani, Y.: On-line admission control and circuit routing for high performance computing and communication. In: 35th IEEE Symposium on Foundations of Computer Science, pp. 412–423 (1994)Google Scholar
  3. 3.
    Raghavan, P., Upfal, E.: Efficient all-optical routing. In: 26th Annual ACM Symposium on Theory of Computing, pp. 134–143 (1994)Google Scholar
  4. 4.
    Aggarwal, A., Bar-Noy, A., Coppersmith, D., Ramaswami, R., Schieber, B., Sudan, M.: Efficient routing and scheduling algorithms for optical networks. In: 5th ACM-SIAM Symposium on Discrete Algorithms, pp. 412–423 (1994)Google Scholar
  5. 5.
    Hromkovič, J., Klasing, R., Stöhr, E., Wagener, H.: Gossiping in vertex-disjoing paths mode in d-dimensional grids and planar graphs. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 200–211. Springer, Heidelberg (1993)Google Scholar
  6. 6.
    Sidhu, D., Nair, R., Abdallah, S.: Finding disjoint paths in networks. ACM SIGCOMM Computer Communication Review 21(4), 43–51 (1991)CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Di Caro, G., Gambardella, L.: Ant algorithms for discrete optimization. Artificial Life 5(2), 137–172 (1999)CrossRefGoogle Scholar
  8. 8.
    Di Caro, G., Dorigo, M.: AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)MATHGoogle Scholar
  9. 9.
    Kleinberg, J.: Approx. algorithms for disjoint paths problems. PhD thesis (1996)Google Scholar
  10. 10.
    Gambardella, L.M., Taillard, E.D., Agazzi, G.: New Ideas in Optimization, pp. 63–76. McGraw-Hill, London (1999)Google Scholar
  11. 11.
    Dorigo, M., Gambardella, L.: Ant Colony System: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  12. 12.
    Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics - Part B (2004) (to appear)Google Scholar
  13. 13.
    Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: Boston University Representative Internet Topoloy Generator (2001),
  14. 14.
    Waxman, B.: Routing of multipoint connections. IEEE Journal on Selected Areas in Communications 6(9), 1622–1671 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Maria Blesa
    • 1
  • Christian Blum
    • 2
  1. 1.Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Université Libre de Bruxelles IRIDIABrusselsBelgium

Personalised recommendations