BLID: An Application of Logical Information Systems to Bioinformatics

  • Sébastien Ferré
  • Ross D. King
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)

Abstract

BLID (Bio-Logical Intelligent Database) is a bioinformatic system designed to help biologists extract new knowledge from raw genome data by providing high-level facilities for both data browsing and analysis. We describe BLID’s novel data browsing system which is based on the idea of Logical Information Systems. This enables combined querying and navigation of data in BLID (extracted from public bioinformatic repositories). The browsing language is a logic especially designed for bioinformatics. It currently includes sequence motifs, taxonomies, and macromolecule structures, and it is designed to be easily extensible, as it is composed of reusable components. Navigation is tightly combined with this logic, and assists users in browsing a genome through a form of human-computer dialog.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bra79.
    Brachman, R.J.: On the epistemological status of semantic nets. In: Findler, N.V. (ed.) Associative Networks: Representation of Knowledge and Use of Knowledge by Examples, Academic Press, New York (1979)Google Scholar
  2. Cor01.
    Cornell, M., et al.: GIMS – a data warehouse for storage and analysis of genome sequence and functional data. In: IEEE Int. Symp. on Bioinformatics and Bioengineering, pp. 15–22. IEEE Press, Los Alamitos (2001)Google Scholar
  3. dR02.
    de Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2), 69–77 (2002)CrossRefGoogle Scholar
  4. FRO2a.
    Ferré, S., Ridoux, O.: A framework for developing embeddable customized logics. In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS, vol. 2372, pp. 191–215. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. FR02b.
    Ferré, S., Ridoux, O.: The use of associative concepts in the incremental building of a logical context. In: Angelova, G., Priss, U., Corbett, D. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 299–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. FR03.
    Ferré, S., Ridoux, O.: An introduction to logical information systems. Information Processing & Management (2003) (to appear)Google Scholar
  7. GK00.
    Ganter, B., Kuznetsov, S.: Formalizing hypotheses with concepts. In: Mineau, G., Ganter, B. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 342–356. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. GMA93.
    Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a Galois lattice with conventional information retrieval methods. International Journal of Man-Machine Studies 38(5), 747–767 (1993)CrossRefGoogle Scholar
  9. Gof97.
    Goffeau, A., et al.: The Yeast genome directory. Nature 387, 1–105 (1997)Google Scholar
  10. KKCD00.
    King, R.D., Karwath, A., Clare, A., Dehaspe, L.: Genome scale prediction of protein functional class from sequence using data mining. In: Ramakrishnan, R., et al. (eds.) ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pp. 384–389. ACM, New York (2000)CrossRefGoogle Scholar
  11. MR94.
    Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19(20), 629–679 (1994)CrossRefMathSciNetGoogle Scholar
  12. OK00.
    Ouali, M., King, R.D.: Cascaded multiple classifiers for secondary structure prediction. Prot. Sci. 9, 1162–1176 (2000)CrossRefGoogle Scholar
  13. Wil82 .
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ordered Sets, pp. 445–470. Reidel, Dordrechtz (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sébastien Ferré
    • 1
  • Ross D. King
    • 1
  1. 1.Department of Computer ScienceUniversity of Wales, AberystwythPenglais, AberystwythUK

Personalised recommendations