AddIntent: A New Incremental Algorithm for Constructing Concept Lattices

  • Dean van der Merwe
  • Sergei Obiedkov
  • Derrick Kourie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)

Abstract

An incremental concept lattice construction algorithm, called AddIntent, is proposed. In experimental comparison, AddIntent outperformed a selection of other published algorithms for most types of contexts and was close to the most efficient algorithm in other cases. The current best estimate for the algorithm’s upper bound complexity to construct a concept lattice L whose context has a set of objects G, each of which possesses at most max(|g′|) attributes, is O(|L||G|2max(|g′|)).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (1999)MATHGoogle Scholar
  2. 2.
    Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  3. 3.
    Bordat, J.: Calcul pratique du treillis de Galois d’une correspondance. Math. Sci. Hum. 96, 31–47 (1986)MATHMathSciNetGoogle Scholar
  4. 4.
    Ganter, B.: Two Basic Algorithms in Concept Analysis. FB4-Preprint No. 831, TH Darmstadt (1984)Google Scholar
  5. 5.
    Godin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms Based on Galois Lattices. Computation Intelligence 11, 246–267 (1995)CrossRefGoogle Scholar
  6. 6.
    Norris, E.: An Algorithm for Computing the Maximal Rectangles in a Binary Relation. Revue Roumaine de Mathématiques Pures et Appliquées 23, 243–250 (1978)MATHMathSciNetGoogle Scholar
  7. 7.
    Valtchev, P., Missaoui, R.: Building Concept (Galois) Lattices from Parts: Generalizing the Incremental Methods. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 290–303. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Kuznetsov, S., Obiedkov, S.: Comparing Performance of Algorithms for Generating Concept Lattices. J. Experimental and Theoretical Artificial Intelligence 14, 189–216 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Van Der Merwe, F., Kourie, D.: AddAtom: an Incremental Algorithm for Constructing Concept- and Concept Sublattices. Technical report of the Department of Computer Science, University of Pretoria, South Africa (2002)Google Scholar
  10. 10.
    Carpineto, C., Romano, G.: A Lattice Conceptual Clustering System and Its Application to Browsing Retrieval. Machine Learning 24, 95–122 (1996)Google Scholar
  11. 11.
    Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Information Processing Letters 71, 199–204 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Van Der Merwe, F.: Constructing Concept Lattices and Compressed Pseudo-Lattices. M.Sc. dissertation, University of Pretoria, South Africa (2003)Google Scholar
  13. 13.
    Obiedkov, S.: Algorithms and Methods of Lattice Theory and Their Application in Machine Learning. PhD thesis, Russian State University for the Humanities (2003)Google Scholar
  14. 14.
    Ferré, S.: Incremental Concept Formation Made More Efficient by the Use of Associative Concepts. INRIA Research Report no 4569 (2002)Google Scholar
  15. 15.
    Valtchev, P., Missaoui, R., Lebrun, P.: A Partition-Based Approach towards Building Galois (Concept) Lattices. Rapport de recherche no. 2000-08, Département d’Informatique, UQAM, Montréal, Canada (2000)Google Scholar
  16. 16.
    Blake, C., Merz, C.: UCI Repository of Machine Learning Databases. University of California, Department of Information and Computer Science, Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
  17. 17.
    Grigoriev, P., Yevtushenko, S.: Elements of an Agile Discovery Environment. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 309–316. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Grigoriev, P., Yevtushenko, S., Grieser, G.: QuDA, a Data Miner’s Discovery Environment. Technical Report AIDA–03–06, TU Darmstadt (2003), http://www.intellektik.informatik.tu-darmstadt.de/~peter/QuDA.pdf
  19. 19.
    Van Der Merwe, F., Kourie, D.: Compressed Pseudo-Lattices. J. Expt. Theor. Artif. Intell. 14, 229–254 (2002)MATHCrossRefGoogle Scholar
  20. 20.
    Valtchev, P., Missaoui, R., Godin, R., Meridji, M.: Generating Frequent Itemsets Incrementally: Two Novel Approaches Based on Galois Lattice Theory. J. Expt. Theor. Artif. Intell. 14, 115–142 (2002)MATHCrossRefGoogle Scholar
  21. 21.
    Mailing list on FCA-algorithms: http://www.aifb.uni-karlsruhe.de/mailman/listinfo/fca-algo, Internet site of the Workshop on Algorithms of Formal Concept Analysis: http://kvo.itee.uq.edu.au/twiki/bin/view/Tockit/AlgoWorkshop

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dean van der Merwe
    • 1
  • Sergei Obiedkov
    • 2
  • Derrick Kourie
    • 1
  1. 1.Department of Computer ScienceUniversity of PretoriaPretoriaSouth Africa
  2. 2.Institute für AlgebraTU DresdenDresdenGermany

Personalised recommendations