Applying Formal Concept Analysis to Description Logics

  • Franz Baader
  • Baris Sertkaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)

Abstract

Given a finite set \(\mathcal{C} := \{ C_1, \ldots, C_n\}\) of description logic concepts, we are interested in computing the subsumption hierarchy of all least common subsumers of subsets of \(\mathcal{C}\) as well as the hierarchy of all conjunctions of subsets of \(\mathcal{C}\). These hierarchies can be used to support the bottom-up construction of description logic knowledge bases. The point is to compute the first hierarchy without having to compute the least common subsumer for all subsets of \(\mathcal{C}\), and the second hierarchy without having to check all possible pairs of such conjunctions explicitly for subsumption. We will show that methods from formal concept analysis developed for computing concept lattices can be employed for this purpose.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F.: Computing a minimal representation of the subsumption lattice of all conjunctions of concepts defined in a terminology. In: Ellis, G., Levinson, R.A., Fall, A., Dahl, V. (eds.) Knowledge Retrieval, Use and Storage for Efficiency: Proc. of the 1st Int. KRUSE Symposium, pp. 168–178 (1995)Google Scholar
  2. 2.
    Baader, F.: Computing the least common subsumer in the description logic EL w.r.t. terminological cycles with descriptive semantics. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 117–130. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Baader, F.: The instance problem and the most specific concept in the description logic EL w.r.t. terminological cycles with descriptive semantics. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 64–78. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Baader, F.: Least common subsumers and most specific concepts in a description logic with existential restrictions and terminological cycles. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 319–324. Morgan Kaufmann, San Francisco (2003)Google Scholar
  5. 5.
    Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 325–330. Morgan Kaufmann, San Francisco (2003)Google Scholar
  6. 6.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  7. 7.
    Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.J.: An empirical analysis of optimization techniques for terminological representation systems or: Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on Knowledge Base Management 4, 109–132 (1994)Google Scholar
  8. 8.
    Baader, F., Küsters, R.: Computing the least common subsumer and the most specific concept in the presence of cyclic ALN-concept descriptions. In: Herzog, O. (ed.) KI 1998. LNCS, vol. 1504, pp. 129–140. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), pp. 96–101 (1999)Google Scholar
  10. 10.
    Baader, F., Molitor, R.: Building and structuring description logic knowledge bases using least common subsumers and concept analysis. In: Ganter, B., Mineau, G. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 290–303. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logics: Theorethical and experimental results. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Proc. of the 4th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1994), pp. 121–133 (1994)Google Scholar
  13. 13.
    Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional horn formulae. Journal of Logic Programming 1(3), 267–284 (1984)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Duquenne, V.: Contextual implications between attributes and some representational properties for finite lattices. In: Ganter, B., Wille, R., Wolf, K.E. (eds.) Beiträge zur Begriffsanalyse, pp. 213–239. B.I. Wissenschaftsverlag, Mannheim (1987)Google Scholar
  15. 15.
    Frazier, M., Pitt, L.: CLASSIC learning. Machine Learning 25, 151–193 (1996)MATHCrossRefGoogle Scholar
  16. 16.
    Ganter, B.: Finding all closed sets: A general approach. Order 8, 283–290 (1991)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ganter, B.: Attribute exploration with background knowledge. Theoretical Computer Science 217(2), 215–233 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)MATHGoogle Scholar
  20. 20.
    Haarslev, V., Möller, R.: High performance reasoning with very large knowledge bases: A practical case study. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence, IJCAI 2001 (2001)Google Scholar
  21. 21.
    Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint Conf. on Automated Reasoning, IJCAR 2001 (2001)Google Scholar
  22. 22.
    Horrocks, I.: Using an expressive description logic: FaCT or fiction. In: Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 636–647 (1998)Google Scholar
  23. 23.
    Küsters, R., Borgida, A.: What’s in an attribute? Consequences for the least common subsumer. J. of Artificial Intelligence Research 14, 167–203 (2001)Google Scholar
  24. 24.
    Küsters, R., Molitor, R.: Approximating most specific concepts in description logics with existential restrictions. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 33–47. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Küsters, R., Molitor, R.: Computing least common subsumers in ALEN. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pp. 219–224 (2001)Google Scholar
  26. 26.
    Lutz, C.: Complexity of terminological reasoning revisited. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 181–200. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  27. 27.
    Marquardt, W.: Trends in computer-aided process modeling. Computers and Chemical Engineering 20(6/7), 591–609 (1996)CrossRefGoogle Scholar
  28. 28.
    Molitor, R.: Unterstützung der Modellierung verfahrenstechnischer Prozesse durch Nicht-Standardinferenzen in Beschreibungslogiken (Supporting the Modelling of of Chemical Processes by Using Non-standard Inferences in Description Logics). PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2000) (in German)Google Scholar
  29. 29.
    Nassiri, M.: Berechnung einer erweiterten Subsumtionshierarchie (Computation of an extended subsumption hierarchy). Diploma thesis, RWTH Aachen, Germany (1997) (in German)Google Scholar
  30. 30.
    Prediger, S.: Terminologische Merkmalslogik in der Formalen Begriffsanalyse. In: [37] (2000)Google Scholar
  31. 31.
    Prediger, S., Stumme, G.: Theory-driven logical scaling: Conceptual information systems meet description logics. In: Franconi, E., Kifer, M. (eds.) Proc. of the 6th Int. Workshop on Knowledge Representation meets Databases, KRDB 1999 (1999)Google Scholar
  32. 32.
    Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontology using a description logic with transitivity and concept inclusions. In: Proceedings of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI 1997), Stanford, CA, AAAI Press, Menlo Park (1997)Google Scholar
  33. 33.
    Rudolf, S.: An FCA method for the extensional exploration of relational data. In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures – Contributions to ICCS 2003, Shaker Verlag, Aachen (2003)Google Scholar
  34. 34.
    Sattler, U.: Terminological Knowledge Representation Systems in a Process Engineering Application. PhD thesis, LuFG Theoretical Computer Science, RWTH Aachen, Germany (1998)Google Scholar
  35. 35.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Schultz, S., Hahn, U.: Knowledge engineering by large-scale knowledge reuse—experience from the medical domain. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 601–610. Morgan Kaufmann, San Francisco (2000)Google Scholar
  37. 37.
    Stumme, G., Wille, R.: Begriffliche Wissensverarbeitung – Methoden und Anwendungen. Springer, Heidelberg (2000)MATHGoogle Scholar
  38. 38.
    Vogt, F.: Formale Begriffsanalyse mit C++. Springer, Heidelberg (1996)Google Scholar
  39. 39.
    Zickwolff, M.: Rule Exploration: First Order Logic in Formal Concept Analysis. PhD thesis, TH Darmstadt, Germany (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Franz Baader
    • 1
  • Baris Sertkaya
    • 1
  1. 1.Theoretical Computer ScienceTU DresdenDresdenGermany

Personalised recommendations