Advertisement

Toward an Alternative Comparison between Different Genetic Programming Systems

  • Nguyen Xuan Hoai
  • R. I. (Bob) McKay
  • D. Essam
  • H. A. Abbass
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3003)

Abstract

In this paper, we use multi-objective techniques to compare different genetic programming systems, permitting our comparison to concentrate on the effect of representation and separate out the effects of different search space sizes and search algorithms. Experimental results are given, comparing the performance and search behavior of Tree Adjoining Grammar Guided Genetic Programming (TAG3P) and Standard Genetic Programming (GP) on some standard problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction. Morgan Kaufmann Pub., San Francisco (1998)zbMATHGoogle Scholar
  2. 2.
    Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective Genetic Programming: Reducing Bloat Using SPEA2. In: Proc. Congress on Evolutionary Computation, CEC 2001, pp. 536–543 (2001)Google Scholar
  3. 3.
    Blickle, T., Thiele, L.: Genetic Programming and Redundancy. In: Hopf, J. (ed.) Genetic Algorithms within the Framework of Evolutionary Computation, pp. 33–38 (1994)Google Scholar
  4. 4.
    Blickle, T.: Evolving Compact Solutions in Genetic Programming: A Case Study. In: Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, P. (eds.) PPSN IV, pp. 564–573. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Bot, M.C.J.: Improving Induction of Linear Classification Tree with Genetic Programming. In: Whitley, D., et al. (eds.) Proc. The Genetic and Evolutionary Computation (GECCO 2000), pp. 403–410. Morgan-Kaufman Publishers, San Francisco (2000)Google Scholar
  6. 6.
    Candito, M.H., Kahane, S.: Can the TAG Derivation Tree Represent a Semantic Graph? An Answer in the Light of Meaning-Text Theory. In: Proc. of TAG+4, Philadelphia, pp. 25–28 (1999)Google Scholar
  7. 7.
    Daida, J.M., Ampy, D.S., Ratanasavetavadhana, M., Li, H., Chaudhri, O.A.: Challenges with Verification, Repeatability, and Meaningful Comparison in Genetic Programming: Gibson’s Magic, 11-10-2003 (2003), Accessed at http://citeseer.nj.nec.com/257412.html
  8. 8.
    Daida, J.M., Ross, S.J., McClain, J.J., Ampy, D.S., Holczer, M.: Challenges with Verification, Repeatability, and Meaningful Comparison in Genetic Programming. In: Koza, J.R., Deb, K., Dorigo, M., et al. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 122–127. Morgan Kaufman Publishers, San Francisco (1998)Google Scholar
  9. 9.
    Dejong, E.D., Pollack, J.B.: Multi-Objective Methods for Tree Size Control. Genetic Programming and Evolvable Machines 4, 211–233 (2003)CrossRefGoogle Scholar
  10. 10.
    Ekart, A., Nemeth, S.Z.: Selection Based on the Pareto Non-domination Criterion for Controlling Code Growth in Genetic Programming. Genetic Programming & Evolvable Machines 2(1), 61–73 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hoai, N.X., McKay, R.I.: A Framework for Tree Adjunct Grammar Guided Genetic Programming. In: Abbass, H.A., Barlow, M. (eds.) Proceedings of Post Graduate ADFA Conference on Computer Science (PACCS 2001), pp. 93–99 (2001)Google Scholar
  12. 12.
    Hoai, N.X., McKay, R.I., Abbass, H.A.: Tree Adjoining Grammars, Language Bias, and Genetic Programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 335–344. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Hoai, N.X., McKay, R.I., Essam, D., Chau, R.: Solving the Symbolic Regression Problem with Tree Adjunct Grammar Guided Genetic Programming: The Comparative Result. In: Proceedings of Congress on Evolutionary Computation (CEC 2002), Hawai, pp. 1326–1331 (2002)Google Scholar
  14. 14.
    Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 13(2), 87–129 (2001)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Haynes, T.: Perturbing the Representation, Decoding, and Evaluation of Chromosomes. In: Koza, J.R., et al. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 122–127. Morgan Kaufman Publishers, San Francisco (1998)Google Scholar
  16. 16.
    Iba, H., Garis, H., Sato, T.: Genetic Programming Using a Minimum Description Length Principle. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, ch. 12. MIT Press, Cambridge (1994)Google Scholar
  17. 17.
    Joshi, A.K., Levy, L.S., Takahashi, M.: Tree Adjunct Grammars. Journal of Computer and System Sciences 10(1), 136–163 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Joshi, A.K., Schabes, Y.: Tree Adjoining Grammars. In: Rozenberg, G., Saloma, A. (eds.) Handbook of Formal Languages, pp. 69–123. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Koza, J.: Genetic Programming. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  20. 20.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  21. 21.
    Langdon, W.B.: Genetic Programming + Data Structure =Automatic Programming. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  22. 22.
    Luke, S., Panait, L.: A Survey and Comparison of Tree Generation Algorithms. In: Spector, L., et al. (eds.) Proceedings of The Genetic and Evolutionary Computation (GECCO 2001), pp. 81–88. Morgan Kaufman Publishers, San Francisco (2001)Google Scholar
  23. 23.
    Michell, T.M.: Machine Learning. McGraw-Hill, New York (1997)Google Scholar
  24. 24.
    O’Neil, M., Ryan, C.: Grammatical Evolution. IEEE Trans on Evolutionary Computation 4(4), 349–357 (2000)Google Scholar
  25. 25.
    Soule, T., Foster, J.: Effects of Code Growth and Parsimony Pressure on Population in Genetic Programming. Evolutionary Computation 6(4), 293–309 (1999)CrossRefGoogle Scholar
  26. 26.
    Whigham, P.A.: Grammatical Bias for Evolutionary Learning. Ph.D Thesis, University of New South Wales, Australia (1996)Google Scholar
  27. 27.
    Zhang, B.T., Muhlenbein, H.: Balancing Accuracy and Parsimony in Genetic Programming. Evolutionary Computation 3(1), 17–38 (1995)CrossRefGoogle Scholar
  28. 28.
    Zitzler, E., Thiele, L.: Multi-objective Evolutionary Algorithms: A Comparative Case Study and The Strength Pareto Approach. IEEE Trans on Evolutionary Computation 3(1), 257–271 (1999)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TK), ETH Zurich, Switzerland (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Nguyen Xuan Hoai
    • 1
  • R. I. (Bob) McKay
    • 1
  • D. Essam
    • 1
  • H. A. Abbass
    • 1
  1. 1.School of Information Technology and Electrical Engineering, Australian Defence Force Academy, University CollegeUniversity of New South WalesAustralia

Personalised recommendations