Advertisement

On the Evolution of Evolutionary Algorithms

  • Jorge Tavares
  • Penousal Machado
  • Amílcar Cardoso
  • Francisco B. Pereira
  • Ernesto Costa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3003)

Abstract

In this paper we discuss the evolution of several components of a traditional Evolutionary Algorithm, such as genotype to phenotype mappings and genetic operators, presenting a formalized description of how this can be attained. We then focus on the evolution of mapping functions, for which we present experimental results achieved with a meta-evolutionary scheme.

Keywords

Genetic Algorithm Genetic Program Mapping Function Genetic Operator Good Individual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banzhaf, W.: Genotype-phenotype-mapping and neutral variation – A case study in genetic programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 322–332. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In: Computational Intelligence, A. (ed.) Dynamic Systems Perspective. IEEE Press, Los Alamitos (1995)Google Scholar
  3. 3.
    Angeline, P.J., Pollack, J.B.: Coevolving high-level representations. In: Artificial Life III. SFI Studies in the Sciences of Complexity, vol. XVII, pp. 55–71 (1994)Google Scholar
  4. 4.
    Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear, K.E. (ed.) Advances in Genetic Programming, pp. 47–74. MIT Press, Cambridge (1994)Google Scholar
  5. 5.
    Altenberg, L.: Evolving better representations through selective genome growth. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation, Part 1 (of 2), Piscataway N.J., pp. 182–187. IEEE, Los Alamitos (1994)Google Scholar
  6. 6.
    Altenberg, L.: Genome growth and the evolution of the genotype-phenotype map. In: Banzhaf, W., Eeckman, F.H. (eds.) Evolution as a Computational Process, pp. 205–259. Springer, Berlin (1995)Google Scholar
  7. 7.
    Dawkins, R.: The evolution of evolvability. In: Langton, C.G. (ed.) Artificial Life. SFI Studies in the Sciences of Complexity, vol. VI, pp. 201–220. Addison-Wesley, Reading (1989)Google Scholar
  8. 8.
    Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 1, pp. 35–43. Morgan Kaufmann, San Francisco (1999)Google Scholar
  9. 9.
    Spears, W.M.: Adapting crossover in evolutionary algorithms. In: Proc. of the Fourth Annual Conference on Evolutionary Programming, Cambridge, MA, pp. 367–384. MIT Press, Cambridge (1995)Google Scholar
  10. 10.
    Angeline, P.J.: Two self-adaptive crossover operators for genetic programming. In: Advances in Genetic Programming 2, pp. 89–110. MIT Press, Cambridge (1996)Google Scholar
  11. 11.
    Teller, A.: Evolving programmers: The co-evolution of intelligent recombination operators. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2, pp. 45–68. MIT Press, Cambridge (1996)Google Scholar
  12. 12.
    Edmonds, B.: Meta-genetic programming: Co-evolving the operators of variation. CPM Report 98-32, Centre for Policy Modelling, Manchester Metropolitan University, UK, Aytoun St., Manchester, M1 3GH, UK (1998)Google Scholar
  13. 13.
    Kantschik, W., Dittrich, P., Brameier, M., Banzhaf, W.: Meta-evolution in graph GP. In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 15–28. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the push programming language. Genetic Programming and Evolvable Machines 3, 7–40 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jorge Tavares
    • 1
  • Penousal Machado
    • 1
    • 2
  • Amílcar Cardoso
    • 1
  • Francisco B. Pereira
    • 1
    • 2
  • Ernesto Costa
    • 1
  1. 1.Centre for Informatics and Systems of the University of CoimbraCoimbraPortugal
  2. 2.Instituto Superior de Engenharia de CoimbraCoimbraPortugal

Personalised recommendations