Global Distributed Evolution of L-Systems Fractals

  • W. B. Langdon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3003)


Internet based parallel genetic programming (GP) creates fractal patterns like Koch’s snow flake. Pfeiffer,, by analogy with seed/embryo development, uses Lindenmayer grammars and LOGO style turtle graphics written in Javascript and Perl. 298 novel pictures were produced. Images are placed in animated snow globes (computerised snowstorms) by www web browsers anywhere on the planet. We discuss artificial life (Alife) evolving autonomous agents and virtual creatures in higher dimensions from a free format representation in the context of neutral networks, gene duplication and the evolution of higher order genetic operators.


Genetic Programming Global Population Neutral Network User Session Grammatical Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. chong and Langdon, 1999.
    Chong, F.S., Langdon, W.B.: Java based distributed genetic programming on the internet. In: Banzhaf, W., et al. (eds.) GECCO, p. 1229. Morgan Kaufmann, San Francisco (1999)Google Scholar
  2. Dawkins, 1986.
    Dawkins, R.: The blind Watchmaker. Longman Scientific and Technical, Harlow (1986)Google Scholar
  3. Goldberg, 1989.
    Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  4. Gruau, 1994.
    Gruau, F.: Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm. PhD thesis, Laboratoire de l’Informatique du Parallilisme, Ecole Normale Supirieure de Lyon, France (1994)Google Scholar
  5. Hemberg et al., 2001
    Hemberg, M., O’Reilly, U.-M., Nordin, P., et al.: GENR8 - A design tool for surface generation. In: Goodman, E.D. (ed.) GECCO Late Breaking Papers, San Francisco, July 9–11, pp. 160–167 (2001)Google Scholar
  6. Hornby and Pollack, 2002.
    Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation for body-brain evolution. Artificial Life 8(3), 223–246 (2002)CrossRefGoogle Scholar
  7. Jacob, 2001.
    Jacob, C.: Illustrating Evolutionary Computation with Mathemat-ica. Morgan Kaufmann, San Francisco (2001)Google Scholar
  8. Mock, 1998.
    Mock, K.J.: Wildwood: The evolution of L-system plants for virtual environments. In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence, Anchorage, Alaska, USA, May 5-9, pp. 476–480. IEEE Press, Los Alamitos (1998)CrossRefGoogle Scholar
  9. O’Neill and Ryan, 2001.
    O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computation 5(4), 349–358 (2001)CrossRefGoogle Scholar
  10. Ortega et al. , 2003
    Ortega, A., Dalhoum, A.l.A., Alfonseca, M., et al.: Grammatical evolution to design fractal curves with a given dimension. IBM Journal Research and Development 47(4), 483–493 (2003)CrossRefGoogle Scholar
  11. Ridley, 1993.
    Ridley, M.: The Red Queen, Sex and the Evolution of Human Nature. Penquin (1993)Google Scholar
  12. Sims, 1994.
    Sims, K.: Evolving 3D morphology and behaviour by competition. In: Brooks, R., Maes, P. (eds.) Artificial Life IV Proceedings, pp. 28–39. MIT Press, Cambridge (1994)Google Scholar
  13. Smith et al., 2002
    Smith, T., Husbands, P., Layzell, P., O’Shea, M., et al.: Fitness landscapes and evolvability. Evolutionary Computation 10(1), 1–34 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • W. B. Langdon
    • 1
  1. 1.Computer ScienceUniversity CollegeLondonUK

Personalised recommendations