Advertisement

Evaluating the Impact of Programming Language Features on the Performance of Parallel Applications on Cluster Architectures

  • Konstantin Berlin
  • Jun Huan
  • Mary Jacob
  • Garima Kochhar
  • Jan Prins
  • Bill Pugh
  • P. Sadayappan
  • Jaime Spacco
  • Chau-Wen Tseng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2958)

Abstract

We evaluate the impact of programming language features on the performance of parallel applications on modern parallel architectures, particularly for the demanding case of sparse integer codes. We compare a number of programming languages (Pthreads, OpenMP, MPI, UPC) on both shared and distributed-memory architectures. We find that language features can make parallel programs easier to write, but cannot hide the underlying communication costs for the target parallel architecture. Powerful compiler analysis and optimization can help reduce software overhead, but features such as fine-grain remote accesses are inherently expensive on clusters. To avoid large reductions in performance, language features must avoid degrading the performance of local computations.

Keywords

Sorting Paral Alan Adapter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi, R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V., Weeratunga, S.: The NAS Parallel Benchmarks, Technical Report RNR-94-007, NASA Ames Research Center (March 1994)Google Scholar
  2. 2.
    Chen, W., Bonachea, D., Duell, J., Husbands, P., Iancu, C., Yelick, K.: A Performance Analysis of the Berkeley UPC Compiler. In: Proceedings of the 17th Annual International Conference on Supercomputing (ICS 2003) (June 2003)Google Scholar
  3. 3.
    Carlson, W., Draper, J., Culler, D., Yelick, K., Brooks, E., Warren, K.: Introduction to UPC and Language Specification, Center for Computing Sciences Technical Report CCS-TR-99-157 (May 1999)Google Scholar
  4. 4.
    Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar
  5. 5.
    Cantonnet, F., Yao, Y., Annareddy, S., Mohamed, A., El-Ghazawi, T.: Performance Monitoring and Evaluation of a UPC Implementation on a NUMA Architecture. In: Proceedings of the International Conference on Parallel and Distributed Parallel Systems (IPDPS 2003) (April 2003)Google Scholar
  6. 6.
    El-Ghazawi, T., Chauvin, S.: UPC Benchmarking Issues. In: Proceedings of the International Conference on Parallel Processing (ICPP 2001) (September 2001)Google Scholar
  7. 7.
    El-Ghazawi, T., Cantonnet, F.: UPC Performance and Potential: A NPB Experimental Study. In: Proceedings of SC 2002, Baltimore (November 2002)Google Scholar
  8. 8.
    Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  9. 9.
    Lewis, B., Berg, D.J.: Multithreaded Programming with Pthreads. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  10. 10.
    Oaks, S., Wong, H.: Java Threads. Nutshell Handbook. O’Reilly & Associates, Inc., Sebastopol (1997)Google Scholar
  11. 11.
    Pugh, B., Spacco, J.: MPJava: High-Performance Message Passing in Java using Java.nio. In: Rauchwerger, L. (ed.) LCPC 2003. LNCS, vol. 2958. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Konstantin Berlin
    • 1
  • Jun Huan
    • 2
  • Mary Jacob
    • 3
  • Garima Kochhar
    • 3
  • Jan Prins
    • 2
  • Bill Pugh
    • 1
  • P. Sadayappan
    • 3
  • Jaime Spacco
    • 1
  • Chau-Wen Tseng
    • 1
  1. 1.Department of Computer ScienceUniversity of MarylandCollege ParkUSA
  2. 2.Department of Computer ScienceUniversity of North CarolinaChapel HillUSA
  3. 3.Department of Computer and Information ScienceOhio State UniversityColumbusUSA

Personalised recommendations