Advertisement

A Note on Constant-Round Zero-Knowledge Proofs for NP

  • Alon Rosen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2951)

Abstract

We consider the problem of constructing a constant-round zero-knowledge proof system for all languages in NP. This problem has been previously addressed by Goldreich and Kahan (Jour. of Cryptology, 1996). Following recent works on concurrent zero-knowledge, we propose an alternative solution that admits a considerably simpler analysis.

Keywords

Hamiltonian Cycle Proof System Commitment Scheme Interactive Proof Permute Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barak, B.: How to go Beyond the Black-Box Simulation Barrier. In: 42nd FOCS, pp. 106–115 (2001)Google Scholar
  2. 2.
    Blum, M.: How to prove a Theorem So No One Else Can Claim It. In: Proc. of the International Congress of Mathematicians, Berekeley, California, USA, pp. 1444–1451 (1986)Google Scholar
  3. 3.
    Brassard, G., Chaum, D., Crépeau, C.: Minimum Disclosure Proofs of Knowledge. JCSS 37(2), 156–189 (1988)zbMATHGoogle Scholar
  4. 4.
    Damgård, I.B., Pedersen, T.P., Pfitzmann, B.: On the Existence of Statistically Hiding Bit Commitment Schemes and Fail-Stop Signatures. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 250–265. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Feige, U.: Ph.D. thesis, Alternative Models for Zero Knowledge Interactive Proofs. Weizmann Institute of Science (1990)Google Scholar
  6. 6.
    Goldreich, O.: Foundations of Cryptography – Basic Tools. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge Proof Systems for NP. Jour. of Cryptology 9(2), 167–189 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldreich, O., Krawczyk, H.: On the Composition of Zero-Knowledge Proof Systems. SIAM J. Computing 25(1), 169–192 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goldreich, O., Oren, Y.: Definitions and Properties of Zero-Knowledge Proof Systems. Jour. of Cryptology 7(1), 1–32 (1994)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof Systems. SIAM J. Comput. 18(1), 186–208 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM 38(1), 691–729 (1991)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of Pseudorandom Generator from any One-Way Function. SIAM Jour. on Computing 28(4), 1364–1396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kilian, J., Petrank, E.: Concurrent and Resettable Zero-Knowledge in Polylogarithmic Rounds. In: 33rd STOC, pp. 560–569 (2001)Google Scholar
  14. 14.
    Micciancio, D., Petrank, E.: Simulatable Commitments and Efficient Concurrent Zero-Knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 140–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Naor, M.: Bit Commitment using Pseudorandomness. Jour. of Cryptology 4, 151–158 (1991)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Zero-Knowledge Arguments for NP can be Based on General Assumptions. Jour. of Cryptology 11, 87–108 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. In: 21st STOC, pp. 33–43 (1989)Google Scholar
  18. 18.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent Zero Knowledge with Logarithmic Round-Complexity. In: 43rd FOCS, pp. 366–375 (2002)Google Scholar
  19. 19.
    Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alon Rosen
    • 1
  1. 1.Laboratory for Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations