Advertisement

On Some Classes of Splicing Languages

  • Rodica Ceterchi
  • Carlos Martín-Vide
  • K. G. Subramanian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2950)

Abstract

We introduce some classes of splicing languages generated with simple and semi-simple splicing rules, in both, the linear and circular cases. We investigate some of their properties.

Keywords

Regular Language Closure Property Mathematical Linguistics Mirror Image Function Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: DNA and Circular Splicing. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 117–129. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: Circular Splicing and Regularity (2002) (submitted)Google Scholar
  3. 3.
    Bonizzoni, P., De Felice, C., Mauri, G., Zizza, R.: Decision Problems for Linear and Circular Splicing Systems. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 78–92. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bonizzoni, P., Ferreti, C., Mauri, G., Zizza, R.: Separating Some Splicing Models. Information Processing Letters 79(6), 255–259 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ceterchi, R., Subramanian, K.G.: Simple Circular Splicing Systems (2003) (to appear ROMJIST 2003)Google Scholar
  6. 6.
    Culik, K., Harju, T.: Splicing Semigroups of Dominoes and DNA. Discrete Applied Mathematics 31, 261–277 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    DeLuca, A., Restivo, A.: A Characterization of Strictly Locally Testable Languages and Its Application to Subsemigroups of a Free Semigroup. Information and Control 44, 300–319 (1980)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Goode, E., Pixton, D.: Semi-simple Splicing Systems. In: Martín-Vide, C., Mitrana, V. (eds.) Where Mathematics, Computer Science, Linguistics and Biology Meet, pp. 343–352. Kluwer Academic Publ., Dordrecht (2001)Google Scholar
  9. 9.
    Head, T.: Formal Language Theory and DNA: an Analysis of the Generative Capacity of Specific Recombinant Behavior. Bull. Math. Biol. 49, 737–759 (1987)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Head, T.: Splicing Representations of Strictly Locally Testable Languages. Discrete Applied Math. 87, 139–147 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Head, T., Păun, G., Pixton, D.: Language Theory and Molecular Genetics: generative Mechanisms Suggested by DNA Recombination. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 295–360. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Mateescu, P.G., Rozenberg, G., Salomaa, A.: Simple Splicing Systems, Discrete. Applied Math. 84, 145–163 (1998)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Păun, G.: On the Splicing Operation. Discrete Applied Math. 70, 57–79 (1996)zbMATHCrossRefGoogle Scholar
  14. 14.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing Paradigms. Springer, Berlin (1998)zbMATHGoogle Scholar
  15. 15.
    Pixton, D.: Regularity of Splicing Languages. Discrete Applied Math. 69, 101–124 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Schützenberger, M.P.: Surcertaines operations de fermeture dans les langages rationnels. Symposia Math. 15, 245–253 (1975)Google Scholar
  17. 17.
    Siromoney, R., Subramanian, K.G., Dare, V.R.: Circular DNA and Splicing Systems. In: Proc. of ICPIA. LNCS, vol. 654, pp. 260–273. Springer, Berlin (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rodica Ceterchi
    • 1
  • Carlos Martín-Vide
    • 2
  • K. G. Subramanian
    • 3
  1. 1.Faculty of MathematicsUniversity of BucharestBucharestRomania
  2. 2.Research Group in Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain
  3. 3.Department of MathematicsMadras Christian CollegeTambaram, ChennaiIndia

Personalised recommendations