Advertisement

On the Expressiveness of Absolute-Time Coordination Languages

  • I. Linden
  • J. -M. Jacquet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2949)

Abstract

Although very simple and elegant, Linda-style coordination models lack the notion of time, and are therefore not able to precisely model real-life coordination applications. Nevertheless, industrial proposals such as TSpaces and JavaSpaces, inspired from Linda, have incorporated time constructs.

This paper aims at a systematic study of the introduction of absolute time in coordination models. It builds upon previous work to study the expressiveness of Linda extended with a wait mechanism and Linda primitives extended to support the duration of tuples and the duration of the suspension of communication operations.

Keywords

Operational Semantic Absolute Time Coordination Model Tuple Space Communication Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, J.-M., Pareschi, R.: Linear Objects: Logical Processes with Built-in Inheritance. New Generation Computing 9(3-4), 445–473 (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F., Herman, I., Spilling, P.: An Overview of Manifold and its Implementation. Concurrency: practice and experience 5(1), 23–70 (1993)CrossRefGoogle Scholar
  3. 3.
    Banatre, J., LeMetayer, D.: Programming by Multiset Transformation. Communications of the ACM 36(1), 98–111 (1991)CrossRefGoogle Scholar
  4. 4.
    Berry, G., Gonthier, G.: The Esterel Synchronous Programming Language: Design, Semantics, Implementation. Science of Computer Programming 19 (1992)Google Scholar
  5. 5.
    De Boer, F.S., Gabbrielli, M., Meo, M.C.: A Timed Concurrent Constraint Language. Information and Computation 161(1), 45–83 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brogi, A., Ciancarini, P.: The Concurrent Language Shared Prolog. ACM Transactions on Programming Languages and Systems 13(1), 99–123 (1991)CrossRefGoogle Scholar
  7. 7.
    Busi, N., Gorrieri, R., Zavattaro, G.: Process Calculi for Coordination: from Linda to JavaSpaces. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, p. 198. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Busi, N., Zavattaro, G.: Expired Data Collection in Shared Dataspaces. Theoretical Computer Science 298, 529–556 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carriero, N., Gelernter, D.: Linda in Context. Communications of the ACM 32(4), 444–458 (1989)CrossRefGoogle Scholar
  10. 10.
    Caspi, P., Halbwachs, N., Pilaud, P., Plaice, J.: Lustre: a Declarative Language for Programming Synchronous Systems. In: Proc. POPL 1987. ACM Press, New York (1987)Google Scholar
  11. 11.
    Ciancarini, P.: Distributed Programming with Logic Tuple Spaces. New Generation Computing 12(3), 251–284 (1994)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ciancarini, P., Rossi, D.: Jada: Coordination and Communication for Java Agents. In: Tschudin, C.F., Vitek, J. (eds.) MOS 1996. LNCS, vol. 1222, pp. 213–228. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    de Boer, F.S., Palamidessi, C.: Embedding as a Tool for Language Comparison. Information and Computation 108(1), 128–157 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces: Principles, Patterns, and Practice. Addison-Wesley, Reading (1999)Google Scholar
  15. 15.
    Gelernter, D., Carriero, N.: Coordination Languages and Their Significance. Communications of the ACM 35(2), 97–107 (1992)CrossRefGoogle Scholar
  16. 16.
    Harel, D.: Statecharts: a Visual Formalism for Complex Systems. Science of Computer Programming 8 (1987)Google Scholar
  17. 17.
    Horita, E., de Bakker, J.W., Rutten, J.J.M.M.: Fully abstract denotational models for nonuiform concurrent languages. Information and computation 115(1), 125–178 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    De Bosschere, K., Linden, I., Jacquet, J.-M., Brogi, A.: On the Expressiveness of Relative-timed Coordination Models. Electronic Notes in Theoretical Computer Science (2003) (to appear)Google Scholar
  19. 19.
    Jacquet, J.-M., De Bosschere, K.: On the Semantics of μLog. Future Generation Computer Systems 10, 93–135 (1994)CrossRefGoogle Scholar
  20. 20.
    Jacquet, J.-M., De Bosschere, K., Brogi, A.: On Timed Coordination Languages. In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 81–98. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Linden, I., Jacquet, J.-M.: On the Expressiveness of Absolute-time Coordination Languages. Technical report, Institute of Informatics, University of Namur (2003)Google Scholar
  22. 22.
    Maraninchi, F.: Operational and Compositional Semantics of Synchronous Automaton Composition. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, Springer, Heidelberg (1992)Google Scholar
  23. 23.
    Gelernter, D., Carriero, N., Zuck, L.: Bauhaus Linda. In: Ciancarini, P., Nierstrasz, O., Yonezawa, A. (eds.) Object based models and languages for concurrent systems. LNCS, vol. 924, pp. 66–76. Springer, Heidelberg (1994)Google Scholar
  24. 24.
    De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: a Kernel Language for Agents Interaction and Mobility. IEEE Transactions on Software Engineering (1998)Google Scholar
  25. 25.
    Nielsen, M., Palamidessi, C., Valencia, F.D.: On the Expressive Power of Temporal Concurrent Constraint Programming Languages. In: Proceedings of the 4th international ACM SIGPLAN conference on Principles and practice of declarative programming, pp. 156–167. ACM, New York (2002)Google Scholar
  26. 26.
    Papadopolous, G.A., Arbab, F.: Coordination Models and Languages. Advances in Computers 48 (1998)Google Scholar
  27. 27.
    Rowstron, A., Wood, A.: A Set of Tuple Space Primitives for Distributed Coordination. In: Proc. 30th Hawaii International Conference on System Sciences, vol. 1, pp. 379–388. IEEE Press, Los Alamitos (1997)CrossRefGoogle Scholar
  28. 28.
    Saraswat, V., Jagadeesan, R., Gupta, V.: Programming in Timed Concurrent Constraint Languages. In: Mayoh, B., Tougu, E., Penjam, J. (eds.) Computer and System Sciences. NATO, vol. ASI-131. Springer, Heidelberg (1994)Google Scholar
  29. 29.
    Saraswat, V., Jagadeesan, R., Gupta, V.: Timed Default Concurrent Constraint Programming. Journal of Symbolic Computation 11 (1996)Google Scholar
  30. 30.
    Saraswat, V.A.: Concurrent Constraint Programming Languages. The MIT Press, Cambridge (1993)Google Scholar
  31. 31.
    Shapiro, E.Y.: Embeddings among Concurrent Programming Languages. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 486–503. Springer, Heidelberg (1992)Google Scholar
  32. 32.
    Smolka, G.: The Oz Programming Model. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 324–343. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  33. 33.
    Tini, S.: On the Expressiveness of Timed Concurrent Constraint Programming. Electronics Notes in Theoretical Computer Science (1999)Google Scholar
  34. 34.
    Tolksdorf, R.: Coordinating Services in Open Distributed Systems with LAURA. In: Hankin, C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061. Springer, Heidelberg (1996)Google Scholar
  35. 35.
    Wyckoff, P., McLaughry, S.W., Lehman, T.J., Ford, D.A.: TSpaces. IBM Systems Journal 37(3) (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • I. Linden
    • 1
  • J. -M. Jacquet
    • 1
  1. 1.Institute of InformaticsUniversity of NamurBelgium

Personalised recommendations