Combinatorics of the Two-Variable Zeta Function

  • Iwan M. Duursma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2948)

Abstract

We consider the rank polynomial of a matroid and some well-known applications to graphs and linear codes. We compare rank polynomials with two-variable zeta functions for algebraic curves. This leads us to normalize the rank polynomial and to extend it to a rational rank function. As applications to linear codes we mention: A formulation of Greene’s theorem similar to an identity for zeta functions of curves first found by Deninger, the definition of a class of generating functions for support weight enumerators, and a relation for algebraic-geometric codes between the matroid of a code and the two-variable zeta function of a curve.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashikhmin, A., Barg, A.: Binomial moments of the distance distribution: bounds and applications. IEEE Trans. Inform. Theory 45(2), 438–452 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baldassarri, F., Deninger, C., Naumann, N.: A motivic version of Pellikaan’s two variable zeta function. arXiv:math.AG/0302121Google Scholar
  3. 3.
    Barg, A.: The matroid of supports of a linear code. Appl. Algebra Engrg. Comm. Comput. 8(2), 165–172 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barg, A.: On some polynomials related to weight enumerators of linear codes. SIAM J. Discrete Math. 15(2), 155–164 (2002) (electronic)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bass, H.: The Ihara-Selberg zeta function of a tree lattice. Internat. J. Math. 3(6), 717–797 (1992)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bollobás, B.: Modern graph theory. Graduate Texts in Mathematics, vol. 184. Springer, New York (1998)MATHGoogle Scholar
  7. 7.
    Brylawski, T., Oxley, J.: The Tutte polynomial and its applications. In: Matroid applications. Encyclopedia Math. Appl., vol. 40, pp. 123–225. Cambridge Univ. Press, Cambridge (1992)CrossRefGoogle Scholar
  8. 8.
    Chung, F.R.K.: Spectral graph theory. CBMS Regional Conference Series in Mathematics, vol. 92. Published for the Conference Board of the Mathematical Sciences, Washington (1997)MATHGoogle Scholar
  9. 9.
    Crapo, H.H., Rota, G.-C.: On the foundations of combinatorial theory: Combinatorial geometries. The MIT Press, Cambridge (1970) (preliminary edition)MATHGoogle Scholar
  10. 10.
    Deninger, C.: Two-variable zeta functions and regularized products. arXiv:math.NT/0210269Google Scholar
  11. 11.
    Duursma, I.: From weight enumerators to zeta functions. Discrete Appl. Math. 111(1-2), 55–73 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Duursma, I.M.: Results on zeta functions for codes. In: Proceedings: Fifth Conference on Algebraic Geometry, Number Theory, Coding Theory and Cryptography, University of Tokyo, January 17-19 (2003); arXiv:math.CO/0302172Google Scholar
  13. 13.
    Duursma, I.M.: Zeta functions for linear codes (1997) (preprint)Google Scholar
  14. 14.
    Duursma, I.M.: Weight distributions of geometric Goppa codes. Trans. Amer. Math. Soc. 351(9), 3609–3639 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Edmonds, J.: Lehman’s switching game and a theorem of Tutte and Nash- Williams. J. Res. Nat. Bur. Standards Sect. B 69B, 73–77 (1965)MathSciNetGoogle Scholar
  16. 16.
    Godsil, C., Royle, G.: Algebraic graph theory. Graduate Texts in Mathematics, vol. 207. Springer, New York (2001)MATHGoogle Scholar
  17. 17.
    Greene, C.: Weight enumeration and the geometry of linear codes. Studies in Appl. Math. 55(2), 119–128 (1976)MATHMathSciNetGoogle Scholar
  18. 18.
    Helleseth, T., Kløve, T., Mykkeltveit, J.: The weight distribution of irreducible cyclic codes with block length n 1((q l−1)/N). Discrete Math. 18(2), 179–211 (1977)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hoffman, J.W.: Remarks on the zeta function of a graph. LSU Mathematics Electronic Preprint Series 2002-17 (2002)Google Scholar
  20. 20.
    Jaeger, F.: On Tutte polynomials of matroids representable over GF(q). European J. Combin. 10(3), 247–255 (1989)MATHMathSciNetGoogle Scholar
  21. 21.
    Kløve, T.: The weight distribution of linear codes over GF(ql) having generator matrix over GF(q). Discrete Math. 23(2), 159–168 (1978)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kløve, T.: Support weight distribution of linear codes. Discrete Math. 106(107), 311–316 (1992); A collection of contributions in honour of Jack van LintCrossRefMathSciNetGoogle Scholar
  23. 23.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland Mathematical Library, vol. 16. North-Holland Publishing Co., Amsterdam (1977)MATHGoogle Scholar
  24. 24.
    Moreno, C.: Algebraic curves over finite fields. Cambridge Tracts in Mathematics, vol. 97. Cambridge University Press, Cambridge (1991)MATHGoogle Scholar
  25. 25.
    Munuera, C.: On the generalized Hamming weights of geometric Goppa codes. IEEE Trans. Inform. Theory 40(6), 2092–2099 (1994)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Naumann, N.: On the irreducibility of the two variable zeta-function for curves over finite fields. arXiv:math.AG/0209092Google Scholar
  27. 27.
    Oxley, J.: What is a matroid? LSU Mathematics Electronic Preprint Series 2002-9 (2002)Google Scholar
  28. 28.
    Oxley, J.G.: Matroid theory. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1992)MATHGoogle Scholar
  29. 29.
    Pellikaan, R.: On the gonality of curves, abundant codes and decoding. In: Coding theory and algebraic geometry, Luminy, 1991. Lecture Notes in Math., vol. 1518, pp. 132–144. Springer, Berlin (1992)CrossRefGoogle Scholar
  30. 30.
    Pellikaan, R.: On special divisors and the two variable zeta function of algebraic curves over finite fields. In: Arithmetic, geometry and coding theory, Luminy, 1993, pp. 175–184. de Gruyter, Berlin (1996)Google Scholar
  31. 31.
    Rosenstiehl, P., Read, R.C.: On the principal edge tripartition of a graph. Ann. Discrete Math. 3, 195–226 (1978); Advances in graph theory (Cambridge Combinatorial Conf., Trinity College, Cambridge, 1977)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Simonis, J.: The effective length of subcodes. Appl. Algebra Engrg. Comm. Comput. 5(6), 371–377 (1994)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Stichtenoth, H.: Algebraic function fields and codes. Universitext. Springer, Berlin (1993)Google Scholar
  34. 34.
    Tsfasman, M.A., Vlăduţ, S.G.: Geometric approach to higher weights. IEEE Trans. Inform. Theory 41(6, part 1), 1564–1588 (1995); Special issue on algebraic geometry codesMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Tutte, W.T.: A ring in graph theory. Proc. Cambridge Philos. Soc. 43, 26–40 (1947)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Tutte, W.T.: On the algebraic theory of graph colorings. J. Combinatorial Theory 1, 15–50 (1966)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    van der Geer, G., Schoof, R.: Effectivity of Arakelov divisors and the theta divisor of a number field. Selecta Math. (N.S.) 6(4), 377–398 (2000)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    van Lint, J.H.: Introduction to coding theory, 3rd edn. Graduate Texts in Mathematics, vol. 86. Springer, Berlin (1999)MATHGoogle Scholar
  39. 39.
    Wei, V.K.: Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory 37(5), 1412–1418 (1991)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Weil, A.: Sur les courbes algébriques et les variétés qui s’en déduisent. Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945); Hermann et Cie., Paris (1948)Google Scholar
  41. 41.
    Welsh, D.J.A.: Matroid theory. L. M. S. Monographs, vol. 8. Academic Press [Harcourt Brace Jovanovich Publishers], London (1976)MATHGoogle Scholar
  42. 42.
    Yang, K., Vijay Kumar, P., Stichtenoth, H.: On the weight hierarchy of geometric Goppa codes. IEEE Trans. Inform. Theory 40(3), 913–920 (1994)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Iwan M. Duursma
    • 1
  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations