Evolving a Cooperative Transport Behavior for Two Simple Robots

  • Roderich Groß
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2936)


This paper addresses the problem of cooperative transport of an object by a group of two simple autonomous mobile robots called s-bots. S-bots are able to establish physical connections between each other and with an object called the prey. The environment consists of a flat ground, the prey, and a light-emitting beacon. The task is to move the prey as far as possible in an arbitrary direction by pulling and/or pushing it. The object cannot be moved without coordination. There is no explicit communication among s-bots; moreover, the s-bots cannot sense each other. All experiments are carried out using a 3D physics simulator.

The s-bots are controlled by recurrent neural networks that are created by an evolutionary algorithm. Evolved solutions attained a satisfactory level of performance and some of them exhibit remarkably low fluctuations under different conditions. Many solutions found can be applied to larger group sizes, making it possible to move bigger objects.


Recurrent Neural Network Parent Individual Camera Sensor Large Group Size Neural Network Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beyer, H.-G.: The Theory of Evolution Strategies. Springer, Berlin (2001)Google Scholar
  2. Deneubourg, J.-L., Goss, S.: Collective patterns and decision-making. Ethology, Ecology and Evolution 1, 295–311 (1989)CrossRefGoogle Scholar
  3. Deneubourg, J.-L., Goss, S., Sandini, G., Ferrari, F., Dario, P.: Self-organizing collection and transport of objects in unpredictable environments. In: Proc. of Japan–USA Symposium on Flexible Automation, Kyoto, Japan, ISCIE, pp. 1093–1098 (1990)Google Scholar
  4. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future Generation Computer Systems 16, 851–871 (2000)CrossRefGoogle Scholar
  5. Dorigo, M., Trianni, V., Şcahin, E., Labella, T.H., Groß, M.R., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., Gambardella, L.M.: Evolving self-organizing behaviors for a Swarm-bot. Technical Report IRIDIA/2003-11, Université Libre de Bruxelles, Belgium (2003) Google Scholar
  6. Elman, J.: Finding structure in time. Cognitive Science 14, 179–211 (1990)CrossRefGoogle Scholar
  7. Grassé, P.: La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insect Sociaux 6, 41–81 (1959)CrossRefGoogle Scholar
  8. Groß, R.: Swarm-intelligent robotics in prey retrieval tasks. Technical Report IRIDIA/2003-27, Université Libre de Bruxelles, Belgium (2003), DEA thesis Google Scholar
  9. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robotics and Autonomous Systems 30, 85–101 (2000)CrossRefGoogle Scholar
  10. Kube, C.R., Zhang, H.: Collective robotic intelligence. In: Second International Conference on Simulation of Adaptive Behaviour (SAB 1992), pp. 460–468. MIT Press, Cambridge (1993a)Google Scholar
  11. Kube, C.R., Zhang, H.: Collective robotics: from social insects to robots. Adaptive Behaviour 2, 189–218 (1993b)CrossRefGoogle Scholar
  12. Kube, C.R., Zhang, H.: Stagnation recovery behaviours for collective robotics. In: Proceedings 1994 IEEE/RSJ/GI International Conference on Intelligent Robotics and Systems, pp. 1883–1890. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  13. Kube, C.R., Zhang, H., Wang, X.: Controlling collective tasks with an ALN. In: 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 289–293. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  14. Mondada, F., Pettinaro, G.C., Kwee, I., Guignard, A., Gambardella, L., Floreano, D., Nolfi, S., Deneubourg, J.-L., Dorigo, M.: SWARM-BOT: A swarm of autonomous mobile robots with self-assembling capabilities. In: Proceedings of the International Workshop on Self-organisation and Evolution of Social Behaviour, Monte Verità, Ascona, Switzerland, University of Zurich, pp. 307–312 (2002)Google Scholar
  15. Parker, L.E.: Current state of the art in distributed autonomous mobile robotics. In: Distributed Autonomous Robotic System, Tokyo, Japan, vol. 4, pp. 3–12. Springer, Heidelberg (2000)Google Scholar
  16. Rechenberg, I.: Cybernetic Solution Path of an Experimental Problem. PhD thesis, Royal Aircraft Establishment, Hants Farnborough, UK (1965)Google Scholar
  17. Schwefel, H.-P.: Adaptive Mechanismen in der biologischen Evolution und ihr Einfluß auf die Evolutionsgeschwindigkeit. Technical Report Re 215/3, Technische Universität Berlin, Germany (1974)Google Scholar
  18. Schwefel, H.-P.: Evolutionsstrategie und numerische Optimierung. PhD thesis, Technische Universität Berlin, Germany (1975) Google Scholar
  19. Sudd, J.: The transport of prey by an ant Pheidole crassinoda. Behaviour 16, 295–308 (1960)CrossRefGoogle Scholar
  20. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Roderich Groß
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations