A Design Taxonomy of Multi-agent Interactions

  • H. Van Dyke Parunak
  • Sven Brueckner
  • Mitch Fleischer
  • James Odell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2935)


Agent interactions are frequently characterized as “coherent,” “collaborative,” “cooperative,” “competitive,” or “coordinated.” These terms specialize the more foundational category of “correlation,” which can be measured by the joint information of a system. “Congruence”is orthogonal to the others, reflecting the degree to which correlation and its specializations satisfy user requirements. A taxonomy of these mechanisms can guide the design of multi-agent interaction. Lack of correlation is sometimes necessary, and requires the use of formal stochasticity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ACM. The ACM Computing Classification System [1998 Version] (1998). HTML, http://www.acm.org/class/1998/
  2. 2.
    Adami, C.: Introduction to Artificial Life. Springer Telos, New York (1998)MATHGoogle Scholar
  3. 3.
    Arkin, R.C.: Cooperation without Communication: Multiagent Schema-Based Robot Navigation. Journal of Robotic Systems 9(3), 351–364 (1992)CrossRefGoogle Scholar
  4. 4.
    Axtell, R.: Personal communication (2002)Google Scholar
  5. 5.
    Ball, P.: The Self-Made Tapestry: Pattern Formation in Nature. Princeton University Press, Princeton (1996)Google Scholar
  6. 6.
    Bond, A.H., Gasser, L. (eds.): Readings in Distributed Artificial Intelligence. Morgan Kaufmann, San Mateo (1988)Google Scholar
  7. 7.
    Brooks, R.A.: Intelligence Without Representation. Artificial Intelligence 47, 139–159 (1991)CrossRefGoogle Scholar
  8. 8.
    Browning, B., Kaminka, G.A., Veloso, M.M.: Principled Monitoring of Distributed Agents for Detection of Coordination Failures. In: Proceedings of Distributed Autonomous Robotic Systems (DARS 2002) (2002)Google Scholar
  9. 9.
    Bussmann, S.: Agent-Oriented Programming of Manufacturing Control Tasks. In: Proceedings of Third International Conference on Multi-Agent Systems (ICMAS 1998), pp. 57–63. IEEE Computer Society, Los Alamitos (1998)CrossRefGoogle Scholar
  10. 10.
    Castelfranchi, C.: Founding Agent’s ’Autonomy’ on Dependence Theory. In: Proceedings of 14th European Conference on Artificial Intelligence, pp. 353–357. IOS Press, Amsterdam (2000)Google Scholar
  11. 11.
    Cohen, P., Levesque, H.J.: Teamwork. Technical Report Technote 504, SRI International, Menlo Park, CA (1991)Google Scholar
  12. 12.
    Dignum, F., Linder, B.v.: Modelling social agents: Communication as actions. In: Jennings, N.R., Wooldridge, M.J., Müller, J.P. (eds.) ECAI-WS 1996 and ATAL 1996. LNCS, vol. 1193, pp. 205–218. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Dignum, F., Morley, D., Sonenberg, E.A., Cavedon, L.: Towards Socially Sophisticated BDI Agents. In: Proceedings of Fourth International Conference on MultiAgent Systems (ICMAS 2000), pp. 111–118. IEEE Computer Society, Los Alamitos (2000)CrossRefGoogle Scholar
  14. 14.
    Durfee, E.H., Lesser, V.R., Corkill, D.D.: Coherent Cooperation among Communicating Problem Solvers. IEEE Transactions on Computers C-36, 1275–1291 (1987)CrossRefGoogle Scholar
  15. 15.
    Fenster, M., Kraus, S., Rosenschein, J.S.: Coordination without Communication: Experimental Validation of Focal Point Techniques. In: Proceedings of International Conference on Multi-Agent Systems (ICMAS 1995), pp. 102–108. AAAI, Menlo Park (1995)Google Scholar
  16. 16.
    Genesereth, M.R., Ginsburg, M., Rosenschein, J.S.: Cooperation without Communication. In: Proceedings of National Conference on Artificial Intelligence (AAAI 1986), pp. 51–57. AAAI, Menlo Park (1986)Google Scholar
  17. 17.
    Grassé, P.-P.: La Reconstruction du nid et les Coordinations Inter-Individuelles chez Bellicositermes Natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai d’interprétation du Comportement des Termites Constructeurs. Insectes Sociaux 6, 41–84 (1959)CrossRefGoogle Scholar
  18. 18.
    Huhns, M.N., Singh, M.P. (eds.): Readings in Agents. Morgan Kaufmann, San Francisco (1998)Google Scholar
  19. 19.
    Jacob, C.: Illustrating Evolutionary Computation With Mathematica. Morgan Kaufmann, San Francisco (2001)Google Scholar
  20. 20.
    Jennings, N.R.: On Agent-Based Software Engineering. Artificial Intelligence 117, 277–296 (2000)MATHCrossRefGoogle Scholar
  21. 21.
    Kaminka, G.A., Fidanboylu, M., Chang, A., Veloso, M.: Learning the Sequential Behavior of Teams from Observations. In: Proceedings of RoboCup Symposium (2002)Google Scholar
  22. 22.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  23. 23.
    Lesser, V., Corkill, D.D.: Functionally accurate, cooperative distributed systems. IEEE Transactions on Systems, Man, and Cybernetics SMC-11, 81–96 (1981)CrossRefGoogle Scholar
  24. 24.
    Lux, A., Steiner, D.: Understanding Cooperation: An Agent’s Perspective. In: Proceedings of First International Conference on Multi-Agent Systems (ICMAS 1995), pp. 261–268. MIT and AAAI (1995)Google Scholar
  25. 25.
    Manuca, R., Li, Y., Riolo, R., Savit, R.: The Structure of Adaptive Competition in Minority Games. Program for the Study of Complex Systems, University of Michigan, Ann Arbor, MI (1998), http://www.pscs.umich.edu/RESEARCH/pscs-tr.html
  26. 26.
    Marsili, M., Challet, D., Zecchina, R.: Exact solution of a modied El Farol’s bar problem: Efficiency and the role of market impact (1999), PDF File http://ttt.lanl.gov/PS_cache/cond-mat/pdf/9908/9908480.pdf
  27. 27.
    Mintzberg, H.: Structure in Fives: Designing Effective Organizations. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  28. 28.
    Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)Google Scholar
  29. 29.
    Parunak, H.V.D.: Manufacturing Experience with the Contract Net. In: Huhns, M.N. (ed.) Distributed Artificial Intelligence, pp. 285–310. Pitman, London (1987)Google Scholar
  30. 30.
    Parunak, H.V.D.: Distributed AI and Manufacturing Control: Some Issues and Insights. In: Demazeau, Y., Müller, J.-P. (eds.) Decentralized AI, pp. 81–104. North-Holland, Amsterdam (1990)Google Scholar
  31. 31.
    Parunak, H.V.D.: Hypercubes Grow on Trees (and Other Observations from the Land of Hypersets). In: Proceedings of The Fifth ACM Conference on Hypertext, pp. 73–81. ACM, New York (1993)CrossRefGoogle Scholar
  32. 32.
    Parunak, H.V.D.: ’Go to the Ant’: Engineering Principles from Natural Agent Systems. Annals of Operations Research 75, 69–101 (1997)MATHCrossRefGoogle Scholar
  33. 33.
    Parunak, H.V.D., Brueckner, S., Sauter, J.: ERIM’s Approach to Fine-Grained Agents. In: Proceedings of NASA/JPL Workshop on Radical Agent Concepts (WRAC 2001) (2001) (forthcoming)Google Scholar
  34. 34.
    Parunak, H.V.D., Brueckner, S.A.: Imputing Agent Cognition from Dynamics. In: Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS 2003) (2003) (submitted)Google Scholar
  35. 35.
    Parunak, H.V.D., Odell, J.: Representing Social Structures in UML for Agent-Oriented Software Engineering. In: Proceedings of Workshop on Agent-Oriented Software Engineering, pp. 17–24 (2001)Google Scholar
  36. 36.
    Parunak, H.V.D., Savit, R., Brueckner, S.A., Sauter, J.: Experiments in Indirect Negotiation. In: Proceedings of The AAAI Fall 2001 Symposium on Negotiation Methods for Autonomous Cooperative Systems (2001)Google Scholar
  37. 37.
    Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI Architecture. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 473–484. Morgan Kaufmann, San Francisco (1991)Google Scholar
  38. 38.
    Savit, R., Manuca, R., Riolo, R.: Adaptive Competition, Market Efficiency, Phase Transitions and Spin-Glasses. PSCS-97-12-001, University of Michigan, Program for the Study of Complex Systems, Ann Arbor, MI (1997), http://xxx.lanl.gov/abs/adaporg/9712006
  39. 39.
    Sawyer, R.K.: Simulating Emergence and Downward Causation in Small Groups. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol. 1979, pp. 49–67. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  40. 40.
    Sen, S., Sekaran, M., Hale, J.: Learning to Coordinate Without Sharing Information. In: Proceedings of National Conference on Artificial Intelligence (AAAI 1994), pp. 426–431. AAAI Press, Menlo Park (1994)Google Scholar
  41. 41.
    Shoham, Y., Tennenholtz, M.: On Social Laws for Artificial Agent Societies: Off-Line Design. Artificial Intelligence 73, 231–252 (1995)CrossRefGoogle Scholar
  42. 42.
    Shoham, Y., Tennenholtz, M.: On the Emergence of Social Conventions: modeling, analysis and simulations. Journal of Artificial Intelligence 94(1-2), 139–166 (1997)MATHCrossRefGoogle Scholar
  43. 43.
    Tidhar, G., Sonenberg, E.A., Rao, A.S.: On Team Knowledge and Common Knowledge. In: Proceedings of Third International Conference on Multi-Agent Systems, pp. 301–308. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  44. 44.
    Weyns, D., Holvoet, T.: Synchronous versus Asynchronous Collaboration in Situated Multi-Agent Systems. In: Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS 2003) (2003) (submitted)Google Scholar
  45. 45.
    Wooldridge, M.J., Jennings, N.R.: Pitfalls of Agent-Oriented Development. In: Proceedings of 2nd Int. Conf. on Autonomous Agents (Agents 1998), pp. 385–391 (1998)Google Scholar
  46. 46.
    Yokoo, M.: Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-Agent Systems. Springer, Berlin (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • H. Van Dyke Parunak
    • 1
  • Sven Brueckner
    • 1
  • Mitch Fleischer
    • 1
  • James Odell
    • 2
  1. 1.AltarumAnn ArborUSA
  2. 2.James Odell AssociatesAnn Arbor

Personalised recommendations