Tiling Rectangular Pictures with P Systems

  • Rodica Ceterchi
  • Radu Gramatovici
  • Nataša Jonoska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2933)


We introduce a class of two-dimensional tiling languages which are distinct from the local and recognizable picture languages. These languages arise from tilings of the integer lattice Z2. For such picture languages, we define a class of tissue-like P systems with active membranes as a generative device. We also make a comparison with the model introduced in [2,3] for the generation of local and recognizable two-dimensional languages, using a similar type of P systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Béal, M.-P., Perrin, D.: Symbolic Dynamics and Finite Automata. In: Rozenberg, G., Salomaa, A. (eds.) Handboook of Formal Languages, vol. 3, pp. 463–506. Springer, Berlin (1997)Google Scholar
  2. 2.
    Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Generating Picture Languages with P systems, Technical Report 26/03. In: Cavaliere, M., Martín-Vide, C., Păun, G. (eds.) Brainstorming Week on Membrane Computing, Rovira i Virgili University, Tarragona, pp. 85–100 (2003)Google Scholar
  3. 3.
    Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Tissue-like P Systems for Picture Generation. Fundamenta Informaticae 56, 311–328 (2003)MATHMathSciNetGoogle Scholar
  4. 4.
    Coven, E., Jonoska, N.: DNA Hybridization, Shifts of Finite Type, and Tiling of the Integers. In: Martín-Vide, C., Mitrana, V. (eds.) Grammars and Automata for String Processing, pp. 369–380. Taylor and Francis, London (2003)Google Scholar
  5. 5.
    Coven, E., Johnson, A., Jonoska, N., Madden, K.: The Symbolic Dynamics of Multidimensional Tiling Systems. Ergodic Theory and Dynamical Systems 23, 1–14 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Giammarresi, D., Restivo, A.: Recognizable Picture Languages. In: Nivat, M., Saoudi, A., Wang, P.S.P. (eds.) International Journal of Pattern Recognition and Artificial Inteligence, Special issue on Parallel Image Processing, pp. 31–46 (1992)Google Scholar
  7. 7.
    Giammarresi, D., Restivo, A.: Two-Dimensional Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handboook of Formal Languages, vol. 3, pp. 215–267. Springer, Berlin (1997)Google Scholar
  8. 8.
    Giavitto, J.-L., Michel, O., Cohen, J.: Accretive Rules in Cayley P Systems, in Membrane Computing. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 319–338. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Kitchens, B., Schmidt, K.: Markov Subgroups of \((Z/2Z)^{Z^2}\). In: Walters, P. (ed.) Symbolic Dynamics and its Applications, Contemporary Mathematics, Providence, vol. 135, pp. 265–283 (1992)Google Scholar
  10. 10.
    Păun, A., Păun, G., Rozenberg, G.: Computing by Communication in Networks of Membranes. International Journal of Foundations of Computer Science 13, 779–798 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Păun, G.: P Systems with Active Membranes: Attacking NP-Complete Problems. Journal of Automata, Languages and Combinatorics 6, 75–90 (2001)MATHMathSciNetGoogle Scholar
  12. 12.
    Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)MATHGoogle Scholar
  13. 13.
    de Prophetís, L., Varricchio, S.: Recognizability of Rectangular Pictures by Wang Systems. Journal of Automata, Languages and Combinatorics 2, 269–288 (1997)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rodica Ceterchi
    • 1
  • Radu Gramatovici
    • 1
  • Nataša Jonoska
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.Department of MathematicsUniversity of South FloridaTampaUSA

Personalised recommendations