ω -P Automata with Communication Rules

  • Rudolf Freund
  • Marion Oswald
  • Ludwig Staiger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2933)

Abstract

We introduce ω -P automata based on the model of P systems with membrane channels (see [8]) using only communication rules. We show that ω -P automata with only two membranes can simulate the computational power of usual (non-deterministic) ω -Turing machines. A very restricted variant of ω -P automata allows for the simulation of ω -finite automata in only one membrane.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, R.S., Gold, A.Y.: ω-computations on Turing machines. Theoretical Computer Science 6, 1–23 (1978)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cohen, R.S., Gold, A.Y.: On the complexity of ω-type Turing acceptors. Theoretical Computer Science 10, 249–272 (1980)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Csuhaj-Varjú, E., Vaszil, G.: P automata or purely communicating accepting P systems. In: [15], pp. 219–233Google Scholar
  4. 4.
    Dassow, J., Păun, G.: On the power of membrane computing. Journal of Universal Computer Science 5(2), 33–49 (1999), http://www.iicm.edu/jucs MathSciNetGoogle Scholar
  5. 5.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)Google Scholar
  6. 6.
    Engelfriet, J., Hoogeboom, H.J.: X-automata on ω-words. Theoretical Computer Science 110(1), 1–51 (1993)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Freund, R., Oswald, M.: A short note on analysing P systems with antiport rules. EATCS Bulletin 78, 231–236 (2002)MATHMathSciNetGoogle Scholar
  8. 8.
    Freund, R., Oswald, M.: P systems with activated/prohibited membrane channels. In: [15], pp. 261–269Google Scholar
  9. 9.
    Freund, R.: On the number of non-terminals in graph-controlled, programmed, and matrix grammars. In: Margenstern, M., Rogozhin, Y. (eds.) Proc. Conf. Universal Machines and Computations, Chişinău. Springer, Berlin (2001)Google Scholar
  10. 10.
    Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  11. 11.
    Păun, A., Păun, G.: The power of communication: P systems with symport/ antiport. New Generation Computing 20(3), 295–306 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000), http://www.tucs.fi; and TUCS Research Report 208 (1998) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Păun, G.: Computing with membranes: an introduction. Bulletin EATCS 67, 139–152 (1999)MATHGoogle Scholar
  14. 14.
    Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  15. 15.
    Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing 2002. LNCS, vol. 2597. Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)MATHGoogle Scholar
  17. 17.
    Staiger, L.: ω-languages. In: [16], vol. 3, pp. 339–387Google Scholar
  18. 18.
    Wagner, K., Staiger, L.: Recursive ω-languages. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 532–537. Springer, Heidelberg (1977)Google Scholar
  19. 19.
    The P Systems Web Page, http://psystems.disco.unimib.it

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rudolf Freund
    • 1
  • Marion Oswald
    • 1
  • Ludwig Staiger
    • 2
  1. 1.Department of Computer ScienceTechnical University WienWienAustria
  2. 2.Computer Science InstituteMartin-Luther University Halle-WittenbergHalleGermany

Personalised recommendations