Avoiding Forbidden Submatrices by Row Deletions

  • Sebastian Wernicke
  • Jochen Alber
  • Jens Gramm
  • Jiong Guo
  • Rolf Niedermeier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2932)

Abstract

We initiate a systematic study of the Row Deletion(B) problem on matrices: For a fixed “forbidden submatrix” B, the question is, given an input matrix A (both A and B have entries chosen from a finite-size alphabet), to remove a minimum number of rows such that A has no submatrix which is equivalent to a row or column permutation of B. An application of this question can be found, e.g., in the construction of perfect phylogenies. Establishing a strong connection to variants of the NP-complete Hitting Set problem, we show that for most matrices BRow Deletion(B) is NP-complete. On the positive side, the relation with Hitting Set problems yields constant-factor approximation algorithms and fixed-parameter tractability results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)Google Scholar
  2. 2.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)MATHGoogle Scholar
  3. 3.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-Modeled Data Clustering: Fixed-Parameter Algorithms for Clique Generation. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 108–119. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated Generation of Search Tree Algorithms for Graph Modification Problems. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 642–653. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Klinz, B., Rudolf, R., Woeginger, G.J.: Permuting Matrices to Avoid Forbidden Submatrices. Discrete Applied Mathematics 60, 223–248 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Natanzon, A., Shamir, R., Sharan, R.: Complexity Classification of Some Edge Modification Problems. Discrete Applied Mathematics 113, 109–128 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Niedermeier, R., Rossmanith, P.: An Efficient Fixed-Parameter Algorithm for 3- Hitting Set. Journal of Discrete Algorithms 1, 89–102 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pe’er, I., Shamir, R., Sharan, R.: On the Generality of Phylogenies from Incomplete Directed Characters. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 358–367. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Shamir, R., Sharan, R., Tsur, D.: Cluster Graph Modification Problems. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 379–390. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Sharan, R.: Graph Modification Problems and Their Applications to Genomic Research. Ph.D. Thesis, School of Computer Science, Tel-Aviv University (2002)Google Scholar
  11. 11.
    Wernicke, S.: On the Algorithmic Tractability of Single Nucleotide Polymorphism (SNP) Analysis and Related Problems. Diploma Thesis, WSI für Informatik, Universit ät Tübingen (September 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sebastian Wernicke
    • 1
  • Jochen Alber
    • 1
  • Jens Gramm
    • 1
  • Jiong Guo
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenFed. Rep. of Germany

Personalised recommendations