Discovery of Lexical Entries for Non-taxonomic Relations in Ontology Learning

  • Martin Kavalec
  • Alexander Maedche
  • Vojtěch Svátek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2932)


Ontology learning from texts has recently been proposed as a new technology helping ontology designers in the modelling process. Discovery of non–taxonomic relations is understood as the least tackled problem therein. We propose a technique for extraction of lexical entries that may give cue in assigning semantic labels to otherwise ‘anonymous’ relations. The technique has been implemented as extension to the existing Text-to-Onto tool, and tested on a collection of texts describing worldwide geographic locations from a tour–planning viewpoint.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proc. ACM SIGMOD Conference on Management of Data, pp. 207–216 (1993)Google Scholar
  2. 2.
    Brewster, C., Ciravegna, F., Wilks, Y.: User-Centred Ontology Learning for Knowledge Management. In: Andersson, B., Bergholtz, M., Johannesson, P. (eds.) NLDB 2002. LNCS (LNAI), vol. 2553, pp. 203–207. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Byrd, R., Ravin, Y.: Identifying and Extracting Relations in Text. In: Proceedings of NLDB 1999, Klagenfurt, Austria (1999)Google Scholar
  4. 4.
    Dill, S., et al.: SemTag and Seeker: Bootstrapping the Semantic Web via Automated Semantic Annotation. In: Proc. WWW 2003, Budapest (2003)Google Scholar
  5. 5.
    Faure, D., Nédellec, C.: ASIUM: Learning Subcategorization Frames and Restrictions of Selection. In: ECML1998, Workshop on Text Mining (1998)Google Scholar
  6. 6.
    Finkelstein-Landau, M., Morin, E.: Extracting Semantic Relationships between Terms: Supervised vs. Unsupervised Methods. In: Int’l Workshop on Ontological Engineering on the Global Information Infrastructure, Dagstuhl (1999)Google Scholar
  7. 7.
    Kavalec, M., Svátek, V.: Information Extraction and Ontology Learning Guided by Web Directory. In: ECAI Workshop on NLP and ML for ontology engineering, Lyon (2002)Google Scholar
  8. 8.
    Kodratoff, Y.: Comparing Machine Learning and Knowledge Discovery in DataBases: An Application to Knowledge Discovery in Texts. In: ECCAI Summer Course, Crete, July 1999. LNCS (LNAI), Springer, Heidelberg (2000)Google Scholar
  9. 9.
    Maedche, A.: Ontology Learning for the Semantic Web. Kluwer, Dordrecht (2002)MATHGoogle Scholar
  10. 10.
    Maedche, A., Staab, S.: Mining Ontologies from Text. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 189–202. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Maedche, A., Volz, R.: The Text-To-Onto Ontology Extraction and Maintenance System. In: ICDM-Workshop on Integrating Data Mining and Knowledge Management, San Jose, California, USA (2001)Google Scholar
  12. 12.
    Missikoff, M., Navigli, R., Velardi, P.: Integrated Approach for Web Ontology Learning and Engineering. IEEE Computer (November 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Martin Kavalec
    • 1
  • Alexander Maedche
    • 2
  • Vojtěch Svátek
    • 1
  1. 1.Department of Information and Knowledge EngineeringUniversity of EconomicsPraha 3Czech Republic
  2. 2.Robert Bosch GmbHStuttgart-FeuerbachGermany

Personalised recommendations