Advertisement

A New Structural Rigidity for Geometric Constraint Systems

  • Christophe Jermann
  • Bertrand Neveu
  • Gilles Trombettoni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2930)

Abstract

The structural rigidity property, a generalisation of Laman’s theorem which characterises generically rigid bar frameworks in 2D, is generally considered a good heuristic to detect rigidities in geometric constraint satisfaction problems (GCSPs). In fact, the gap between rigidity and structural rigidity is significant and essentially resides in the fact that structural rigidity does not take geometric properties into account. In this article, we propose a thorough analysis of this gap. This results in a new characterisation of rigidity, the extended structural rigidity, based on a new geometric concept: the degree of rigidity (DOR). We present an algorithm for computing the DOR of a GCSP, and we prove some properties linked to this geometric concept. We also show that the extended structural rigidity is strictly superior to the structural rigidity and can thus be used advantageously in the algorithms designed to tackle the major issues related to rigidity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ang82]
    Angeles, J.: Spatial Kinematic Chains. Springer, Berlin (1982)zbMATHGoogle Scholar
  2. [BFH+95]
    Bouma, W., Fudos, I., Hoffmann, C.M., Cai, J., Paige, R.: Geometric constraint solver. Computer Aided Design 27(6), 487–501 (1995)zbMATHCrossRefGoogle Scholar
  3. [Cho88]
    Chou, S.C.: Mechanical Theorem Proving. Reidel Publishing Co., Dordrechtz (1988)zbMATHGoogle Scholar
  4. [DMS97]
    Dufourd, J.-F., Mathis, P., Schreck, P.: Formal resolution of geometrical constraint systems by assembling. In: Hoffmann, C., Bronswort, W. (eds.) Proc. Fourth Symposium on Solid Modeling and Applications, pp. 271–284 (1997)Google Scholar
  5. [FH93]
    Fudos, I., Hoffmann, C.M.: Correctness proof of a geometric constraint solver. Technical Report TR-CSD-93-076, Purdue University, West Lafayette, Indiana (1993)Google Scholar
  6. [Gr17]
    Grbler, M.: Getriebelehre. Springer, Berlin (1917)Google Scholar
  7. [Gra02]
    Graver, J.: Counting on Frameworks: Mathematics to Aid the Design of Rigid Structures. Dolciani Mathematical Expositions, vol. 25. Mathematical Association of America (2002)Google Scholar
  8. [Hen92]
    Hendrickson, B.: Conditions for unique realizations. SIAM j Computing 21(1), 65–84 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [HLS97]
    Hoffmann, C.M., Lomonosov, A., Sitharam, M.: Finding solvable subsets of constraint graphs. In: Smolka, G. (ed.) CP 1997. C.M. Hoffmann, A. Lomonosov, and M. Sitharam, vol. 1330, pp. 463–477. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. [HLS00]
    Hoffmann, C.M., Lomonosov, A., Sitharam, M.: Decomposition plans for geometric constraint systems. In: Proc. J. Symbolic Computation 2000 (2000)Google Scholar
  11. [Jer02]
    Jermann, C.: Rsolution de contraintes gomtriques par rigidification rcursive et propagation d’intervalles. Thse de doctorat en informatique, Universit de Nice Sophia-Antipolis (2002)Google Scholar
  12. [JNT03]
    Jermann, C., Neveu, B., Trombettoni, G.: Algorithms for identifying rigid subsystems in geometric constraint systems. In: 18th International Joint Conference in Artificial Intelligence, IJCAI 2003 (2003)Google Scholar
  13. [JTNR00]
    Jermann, C., Trombettoni, G., Neveu, B., Rueher, M.: A constraint programming approach for solving rigid geometric systems. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 233–248. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. [Kra92]
    Kramer, G.: Solving Geometric Constraint Systems. MIT Press, Cambridge (1992)Google Scholar
  15. [Lam70]
    Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [LM96]
    Latham, R.S., Middleditch, A.E.: Connectivity analysis: A tool for processing geometric constraints. Computer Aided Design 28(11), 917–928 (1996)CrossRefGoogle Scholar
  17. [Sit00]
    Sitharam, M.: Personal communication on the minimal dense algorithm. University of Florida at Gainesville (2000)Google Scholar
  18. [Wan02]
    Wang, D.: Geother 1.1: Handling and proving geometric theorems automatically. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 194–215. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. [Whi87]
    Whiteley, W.: Applications of the geometry of rigid structures. In: Crapo, H. (ed.) Computer Aided Geometric Reasoning, pp. 219–254. INRIA (1987)Google Scholar
  20. [Wu86]
    Wu, W.: Basic principles of mechanical theorem proving in elementary geometries. J. Automated Reasoning 2, 221–254 (1986)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Christophe Jermann
    • 1
  • Bertrand Neveu
    • 2
  • Gilles Trombettoni
    • 2
  1. 1.AI LabEPFLLausanneSwitzerland
  2. 2.COPRIN TeamINRIA-I3S-CERMICSSophia AntipolisFrance

Personalised recommendations