Advertisement

RelView and Rath – Two Systems for Dealing with Relations

  • Rudolf Berghammer
  • Gunther Schmidt
  • Michael Winter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2929)

Abstract

In this paper we present two systems for dealing with relations, the RelView and the Rath system. After a short introduction to both systems we exhibit their usual domain of application by presenting some typical examples.

Keywords

Concept Lattice Relation Algebra Formal Concept Analysis Relational Category Universal Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbut, M., Monjardet, B.: Ordre et classification: Algébre et combinatoire. Hachette (1970)Google Scholar
  2. 2.
    Behnke, R., Berghammer, R., Schneider, P.: Machine support of relational computations. The Kiel RelView system. Bericht Nr. 9711, Institut für Informatik und Praktische Mathematik, Universität Kiel (1997)Google Scholar
  3. 3.
    Behnke, R., Berghammer, R., Meyer, E., Schneider, P.: RelView – A system for calculation with relations and relational programming. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 318–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Brink, C., Kahl, W., Schmidt, G.: Relational Methods in Computer Science, Advances in Computing Science. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland, Amsterdam (1990)Google Scholar
  6. 6.
    Ganter, B., Wille, R.: Formal concept analysis: Mathematical foundations. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Hattensperger, C., Berghammer, R., Schmidt, G.: Ralf – A relation-algebraic formula manipulation system and proof checker. Notes to a system demonstration. In: Nivat, M., Rattray, C., Rus, T., Scollo, G. (eds.) Proc. 3rd Internat. Conf. “Algebraic Methodology and Software Technology (AMAST 1993), Workshops in Computing, pp. 405–406. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Hattensperger, C.: Rechnergestütztes Beweisen in heterogenen Relationenalgebren. Dissertation, Fakultät für Informatik, Universität der Bundeswehr München (1997)Google Scholar
  9. 9.
    Kahl, W., Schmidt, G.: Exploring (finite) relation algebras using tools written in Haskell. Report Nr. 2000-02, Fakultät für Informatik, Universität der Bundeswehr München (2000)Google Scholar
  10. 10.
    Leoniuk, B.: ROBDD-basierte Implementierung von Relationen und relationalen Operationen mit Anwendungen. Dissertation, Institut für Informatik und Praktische Mathematik, Universität Kiel (2001)Google Scholar
  11. 11.
    Offermann, E.: Konstruktion relationaler Kategorien. Dissertation, Fakultät für Informatik, Universität der Bundeswehr München (2003)Google Scholar
  12. 12.
    Olivier, J.P., Serrato, D.: Catégories de Dedekind. Morphismes dans les Catégories de Schröder. C.R. Acad. Sci. Paris 290, 939–941 (1980)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer, Heidelberg (1989); English version: Relations and Graphs. Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoret. Comput. Sci. Springer, Heidelberg (1993)Google Scholar
  14. 14.
    Schmidt, G.: Decomposing relations – Data analysis techniques for Boolean matrices. Report Nr. 2002-09, Fakultät für Informatik, Universität der Bundeswehr München (2002)Google Scholar
  15. 15.
    Winter, M.: Strukturtheorie heterogener Relationenalgebren mit Anwendung auf Nichtdetermismus in Programmiersprachen. Dissertation, Fakultät für Informatik, Universität der Bundeswehr München (1998)Google Scholar
  16. 16.
    Winter, M.: A new algebraic approach to L-fuzzy relations convenient to study crispness. Information Sciences 139, 233–252 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rudolf Berghammer
    • 1
  • Gunther Schmidt
    • 2
  • Michael Winter
    • 3
  1. 1.Institut für Informatik und Praktische MathematikChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Fakultät für InformatikUniversität der Bundeswehr MünchenNeubibergGermany
  3. 3.Computer Science DepartmentBrock UniversitySt. CatharinesCanada

Personalised recommendations