Advertisement

Towards Verification and Validation in Multiagent-Based Systems and Simulations: Analyzing Different Learning Bargaining Agents

  • Keiki Takadama
  • Yutaka L. Suematsu
  • Norikazu Sugimoto
  • Norberto E. Nawa
  • Katsunori Shimohara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2927)

Abstract

Verification and validation (V&V) is a critical issue in both multi-agent systems (MAS) and agent-based social simulation (ABSS). As the first step towards V&V methods for MAS and ABSS, this paper investigates whether different computational models can produce the same results. Specifically, we compare three computational models with different learning mechanisms in a multiagent-based simulation and analyze the results of these models in a bargaining game as one of the fundamental examples in game theory. This type of V&V is not based on the between-models addressed in conventional research, but on a within-model. A comparison of the simulation results reveals that (1) computational models and simulation results are minimally verified and validated in the case of ES(evolutionary strategy)- and RL(reinforcement learning)-based agents; and (2) learning mechanisms that enable agents to acquire their rational behaviors differ according to the knowledge representation (i.e., the strategies in the bargaining game) of the agents.

Keywords

Verification and validation multiagent-based simulation comparison of different models learning mechanism bargaining game 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, W.B., Holland, J.H., Palmer, R., Tayler, P.: Asset Pricing Under Endogenous Expectations in an Artificial Stock Market. In: Arthur, W.B., Durlauf, S.N., Lane, D.A. (eds.) The Economy as an Evolving Complex System II, pp. 15–44. Addison-Wesley, Reading (1997)Google Scholar
  2. 2.
    Axtell, R., Axelrod, R., Epstein, J., Cohen, M.D.: Aligning Simulation Models: A Case Study and Results. Computational and Mathematical OrganizationTheory (CMOT) 1(1), 123–141 (1996)CrossRefGoogle Scholar
  3. 3.
    Bäck, T., Rudolph, G., Schwefel, H.: Evolutionary Programming and Evolution Strategies: Similarities and Differences. In: The 2nd Annual Evolutionary Programming Conference, pp. 11–22 (1992)Google Scholar
  4. 4.
    Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P., McKenzie, P.: Systems and Software Verification: Model-Checking Techniques and Tools. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  5. 5.
    Carley, K.M., Gasser, L.: Computational and Organization Theory. In: Weiss, G. (ed.) Multiagent Systems – Modern Approach to Distributed Artificial Intelligence, pp. 299–330. The MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Friedman, D., Sunder, S.: Experimental Methods: A Primer for Economists. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  8. 8.
    Greenblat, C.S.: Designing Games and Simulations: An Illustrated Handbook. Sage Publications, Thousand Oaks (1988)Google Scholar
  9. 9.
    Güth, W., Schmittberger, R., Schwarze, B.: An Experimental Analysis of Ultimatum Bargaining. Journal of Economic Behavior and Organization 3, 367–388 (1982)CrossRefGoogle Scholar
  10. 10.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Michigan (1975)Google Scholar
  11. 11.
    Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.R.: Induction. The MIT Press, Cambridge (1986)Google Scholar
  12. 12.
    Kagel, J.H., Roth, A.E.: Handbook of Experimental Economics. Princeton University Press, Princeton (1995)Google Scholar
  13. 13.
    Miller, L.A., Groundwater, E.H., Hayes, J.E., Mirsky, S.M.: Survey and Assessment of Conventional Software Verification and Validation Methods. Report NUREG/CR-6018, Nuclear Regulatory Commission (1993)Google Scholar
  14. 14.
    Muthoo, A.: Bargaining Theory with Applications. Cambridge University Press, Cambridge (1999)zbMATHCrossRefGoogle Scholar
  15. 15.
    Muthoo, A.: A Non-Technical Introduction to Bargaining Theory. World Economics, 145–166 (2000)Google Scholar
  16. 16.
    Neelin, J., Sonnenschein, H., Spiegel, M.: A Further Test of Noncooperative Bargaining Theory: Comment. American Economic Review 78(4), 824–836 (1988)Google Scholar
  17. 17.
    Nydegger, R.V., Owen, G.: Two-Person Bargaining: An Experimental Test of the Nash Axioms. International Journal of Game Theory 3(4), 239–249 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    O’Leary, D.E.: Validating of Expert Systems with Applications to Auditing and Accounting Expert Systems. Decision Science 18(3), 464–486 (1987)Google Scholar
  19. 19.
    Oliver, J.R.: On Artificial Agents for Negotiation in Electronic Commerce. Ph.D. Thesis, University of Pennsylvania (1996)Google Scholar
  20. 20.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  21. 21.
    Roth, A.E., Prasnikar, V., Okuno-Fujiwara, M., Zamir, S.: Bargaining and Market Behavior in Jerusalem, Ljubljana, Pittsburgh, and Tokyo: An Experimental Study. American Economic Review 81(5), 1068–1094 (1991)Google Scholar
  22. 22.
    Rubinstein, A.: Perfect Equilibrium in a Bargaining Model. Econometrica 50(1), 97–109 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Smith, S.F.: Flexible Learning of Problem Solving Heuristics through Adaptive Search. In: The 8th International Joint Conference on Artificial Intelligence IJCAI 1983, pp. 422–425 (1983)Google Scholar
  24. 24.
    Ståhl, I.: Bargaining Theory, Economics Research Institute at the Stockholm School of Economics (1972)Google Scholar
  25. 25.
    Sutton, R.S., Bart, A.G.: Reinforcement Learning – An Introduction. The MIT Press, Cambridge (1998)Google Scholar
  26. 26.
    Takadama, K., Sugimoto, N., Nawa, N.E., Shimohara, K.: Grounding to Both Theory and Real World by Agent-Based Simulation: Analyzing Learning Agents in Bargaining Game. In: NAACSOS (North American Association for Computational Social and Organizational Science) Conference 2003 (2003) (to appear)Google Scholar
  27. 27.
    Watkins, C.J.C.H., Dayan, P.: Technical Note: Q-Learning. Machine Learning 8, 55–68 (1992)Google Scholar
  28. 28.
    Zlatareva, N., Preece, A.: State of the Art in Automated Validation of Knowledge-Based Systems. Expert Systems with Applications 7(2), 151–167 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Keiki Takadama
    • 1
    • 2
  • Yutaka L. Suematsu
    • 2
    • 3
  • Norikazu Sugimoto
    • 4
  • Norberto E. Nawa
    • 2
  • Katsunori Shimohara
    • 2
  1. 1.Tokyo Institute of TechnologyYokohamaJapan
  2. 2.ATR Human Information Science Labs.“Keihanna Science City” KyotoJapan
  3. 3.Graduate School of Kyoto UniversityKyotoJapan
  4. 4.Nara Institute of Science and TechnologyNaraJapan

Personalised recommendations