Discovering, Visualizing, and Sharing Knowledge through Personalized Learning Knowledge Maps

  • Jasminko Novak
  • Michael Wurst
  • Monika Fleischmann
  • Wolfgang Strauss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2926)


This paper presents an agent-based approach to semantic exploration and knowledge discovery in large information spaces by means of capturing, visualizing and making usable implicit knowledge structures of a group of users. The focus is on the developed conceptual model and system for creation and collaborative use of personalized learning knowledge maps. We use the paradigm of agents on the one hand as model for our approach, on the other hand it serves as a basis for an efficient implementation of the system. We present an unobtrusive model for profiling personalised user agents based on two dimensional semantic maps that provide 1) a medium of implicit communication between human users and the agents, 2) form of visual representation of resulting knowledge structures. Concerning the issues of implementation we present an agent architecture, consisting of two sets of asynchronously operating agents, which enables both sophisticated processing, as well as short respond times necessary for enabling interactive use in real-time.


Knowledge Structure Collaborative Filter Information Space Information Item Context Similarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company. Oxford University Press, Oxford (1995)Google Scholar
  2. 2.
    Krueger, W., Nielsen, J., Oates, T., Finin, T.: Automatically generated daml markup for semistructured documents. In: Proceedings of the AAAI Spring Symposium on Agent Mediated Knowledge Management (2003)Google Scholar
  3. 3.
    Haimowitz, I., Santo, N.: Agent-mediated knowledge management for tracking internet behavior. In: Proceedings of the AAAI Spring Symposium on Agent Mediated Knowledge Management (2003)Google Scholar
  4. 4.
    Furtado, J.J.V., Machado, V.P.: Improving organizational memory through agents for knowledge discovery in database. In: Proceedings of the AAAI Spring Symposium on Agent Mediated Knowledge Management (2003)Google Scholar
  5. 5.
    Tacla, C.A., Barthes, J.P.: A multi-agent architecture for knowledge aquisition. In: Proceedings of the AAAI Spring Symposium on Agent Mediated Knowledge Management (2003)Google Scholar
  6. 6.
    Chalmers, M.: Paths and contextually specific recommendation. In: DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries (2001)Google Scholar
  7. 7.
    Lin, X., Soergel, D., Marchionini, G.: A self-organizing semantic map for information retrieval. In: Proc. of 14th ACM/SIGIR Conf. (1991)Google Scholar
  8. 8.
    Kohonen, T., Kaski, S., Lagus, K., Salojrvi, J., Paatero, V., Saarela, A.: Organization of a massive document collection. IEEE Transactions on Neural Networks 11, 574–585 (2000)CrossRefGoogle Scholar
  9. 9.
    Sack, W.: Conversation map: An interface for very large-scale conversations. Journal of Management Information Systems (2000)Google Scholar
  10. 10.
    Becks, A., Sklorz, S., Jarke, M.: A modular approach for exploring the semantic structure of technical document collections. In: Proc. of AVI 2000 (2000)Google Scholar
  11. 11.
    Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Computer Supported Cooperative Work, pp. 241–250 (2000)Google Scholar
  12. 12.
    Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work, Chapel Hill, North Carolina, pp. 175–186. ACM, New York (1994)CrossRefGoogle Scholar
  13. 13.
    Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Honkela, T.: Self-Organizing Maps in Natural Language Processing. PhD thesis, Helsinki, Finland (1997)Google Scholar
  15. 15.
    Aha, D., Kibler, D., Albe, M.: Instance based learning algorithms. Machine Learning 6, 37–66 (1991)Google Scholar
  16. 16.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)Google Scholar
  17. 17.
    Robertson, G., Mackinlay, J.D.: The document lens. In: ACM UIST (1993)Google Scholar
  18. 18.
    Sarkar, M., Snibbe, S.S., Tversky, O.J., Reiss, S.P.: Stretching the rubber sheet: A metaphor for viewing large layouts on small screens. In: ACM Symposium on User Interface Software and Technology, pp. 81–91 (1993)Google Scholar
  19. 19.
    Bederson, B., et al.: Pad++: A zoomable graphical sketchpad for exploring alternate interface physics. J. Vis. Lang. Comput. 7(3) (1996)Google Scholar
  20. 20.
    Fleischmann, M., Strauss, W., Novak, J., Paal, S., Mueller, B., Blome, G., Peranovic, P., Seibert, C., Schneider, M.: - an internet media lab for knowledge discovery in mixed realities. In: Proceedings of the Conference cast01 - living in mixed realities (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jasminko Novak
    • 1
  • Michael Wurst
    • 2
  • Monika Fleischmann
    • 1
  • Wolfgang Strauss
    • 1
  1. 1.Fraunhofer Institute for Media CommunicationMARS Exploratory Media LabSankt AugustinGermany
  2. 2.Artificial Intelligence Dept.University of DortmundDortmundGermany

Personalised recommendations