Validation of Stochastic Systems pp 44-88

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2925) | Cite as

Tutte le Algebre Insieme: Concepts, Discussions and Relations of Stochastic Process Algebras with General Distributions

  • Mario Bravetti
  • Pedro R. D’Argenio

Abstract

We report on the state of the art in the formal specification and analysis of concurrent systems whose activity duration depends on general probability distributions. First of all the basic notions and results introduced in the literature are explained and, on this basis, a conceptual classification of the different approaches is presented. We observe that most of the approaches agree on the fact that the specification of systems with general distributions has a three level structure: the process algebra level, the level of symbolic semantics and the level of concrete semantics. Based on such observations, a new very expressive model is introduced for representing timed systems with general distributions. We show that many of the approaches in the literature can be mapped into this model establishing therefore a formal framework to compare these approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Leach Albert, J., Monien, B., Rodríguez, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 113–126. Springer, Heidelberg (1991)Google Scholar
  2. 2.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  3. 3.
    Bernardo, M.: Theory and Application of Extended Markovian Process Algebras. PhD thesis, Dottorato di Ricerca in Informatica. Università di Bologna, Padova, Venezia (February 1999)Google Scholar
  4. 4.
    Bravetti, M.: Specification and Analysis of Stochastic Real-Time Systems. PhD thesis, Dottorato di Ricerca in Informatica. Università di Bologna, Padova, Venezia (February 2002), Available at http://www.cs.unibo.it/~bravetti/
  5. 5.
    Bravetti, M., Bernardo, M.: Compositional asymmetric cooperations for process algebras with probabilities, priorities, and time. In: Proc. of the 1st Int. Workshop on Models for Time-Critical Systems, MTCS 2000, State College, PA. Electronic Notes in Theoretical Computer Science, vol. 39(3). Elsevier, Amsterdam (2000)Google Scholar
  6. 6.
    Bravetti, M., Bernardo, M., Gorrieri, R.: Towards performance evaluation with general distributions in process algebra. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 405–422. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Bravetti, M., Gorrieri, R.: Deciding and axiomatizing weak st bisimulation for a process algebra with recursion and action refinement. ACM Transactions on Computational Logic 3(4), 465–520 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theoretical Computer Science 282, 5–32 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brinksma, E., Katoen, J.-P., Langerak, R., Latella, D.: A stochastic causalitybased process algebra. The Computer Journal 38(6), 552–565 (1995)CrossRefGoogle Scholar
  10. 10.
    Cox, D.R.: The analysis of non-markovian stochastic processes by the inclusion of supplementary variables. In: Proc. of the Cambridge Philosophical Society, vol. 51, pp. 433–440 (1955)Google Scholar
  11. 11.
    D’Argenio, P.R.: Algebras and Automata for Timed and Stochastic Systems. PhD thesis, Department of Computer Science, University of Twente (1999)Google Scholar
  12. 12.
    D’Argenio, P.R.: A compositional translation of stochastic automata into timed automata. Technical Report CTIT 00-08, Department of Computer Science, University of Twente (2000)Google Scholar
  13. 13.
    D’Argenio, P.R., Hermanns, H., Katoen, J.-P., Klaren, R.: MoDeST - A modelling and description language for stochastic timed systems. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 87–104. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    D’Argenio, P.R., Katoen, J.-P., Brinksma, E.: An algebraic approach to the specification of stochastic systems (extended abstract). In: Gries, D., de Roever, W.-P. (eds.) Proceedings of the IFIP Working Conference on Programming Concepts and Methods, PROCOMET 1998, Shelter Island, New York, USA. IFIP, pp. 126–147. Chapman & Hall, Boca Raton (1998)Google Scholar
  15. 15.
    van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories of concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)Google Scholar
  16. 16.
    Glynn, P.W.: A GSMP formalism for discrete event simulation. Proceedings of the IEEE 77(1), 14–23 (1989)CrossRefGoogle Scholar
  17. 17.
    Götz, N., Herzog, U., Rettelbach, M.: TIPP - Introduction and application to protocol performance analysis. In: König, H. (ed.) Formale Beschreibungstechniken für verteilte Systeme. FOKUS. Saur Publishers (1993)Google Scholar
  18. 18.
    Harrison, P.G., Strulo, B.: Spades: Stochastic process algebra for discrete event simulation. Journal of Logic and Computation 10(1), 3–42 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)MATHCrossRefGoogle Scholar
  20. 20.
    Hillston, J.: A Compositional Approach to Performance Modelling. In: Distinguished Dissertation in Computer Science, Cambridge University Press, Cambridge (1996)Google Scholar
  21. 21.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, Englewood Cliffs (1985)MATHGoogle Scholar
  22. 22.
    Kanani, K.: A Unified Framework for Systematic Quantitative and Qualitative Analysis of Communicating Systems. PhD thesis, Imperial College, UK (1998)Google Scholar
  23. 23.
    Katoen, J.-P.: Quantitative and Qualitative Extensions of Event Structures. PhD thesis, Department of Computer Science, University of Twente (April 1996)Google Scholar
  24. 24.
    Katoen, J.-P., Brinksma, E., Latella, D., Langerak, R.: Stochastic simulation of event structures. In: Ribaudo [33], pp. 21–40Google Scholar
  25. 25.
    Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94, 1–28 (1991)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Law, A.M., Kelton, W.D.: Simulation Modelling and Analysis, 2nd edn. McGraw-Hill Inc., New York (1991)Google Scholar
  28. 28.
    López, N., Núñez, M.: NMSPA: A non-Markovian model for stochastic processes. In: Proceedings of the International Workshop on Distributed System Validation and Verification (DSVV 2000), Taipei, Taiwan, ROC (2000), http://www.math.ntu.edu.tw/~eric/dsvvproc/
  29. 29.
    López, N., Núñez, M.: A testing theory for generally distributed stochastic processes. In: Larsen, K., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 321–335. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    López, N., Núñez, M.: Weak stochastic bisimulation for non-markovian processes (2003) (Submitted for publication)Google Scholar
  31. 31.
    Milner, R.: Communication and Concurrency. Prentice-Hall International, Englewood Cliffs (1989)MATHGoogle Scholar
  32. 32.
    Priami, C.: Stochastic π-calculus with general distributions. In: Ribaudo [33], pp.41–57Google Scholar
  33. 33.
    Ribaudo, M. (ed.): Proc. of the 4th Workshop on Process Algebras and Performance Modelling, PAPM 1996. Università di Torino, Torino, Italy (1996)Google Scholar
  34. 34.
    Ruys, T.C., Langerak, R., Katoen, J.-P., Latella, D., Massink, M.: First passage time analysis of stochastic process algebra using partial orders. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 220–235. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  35. 35.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1995)Google Scholar
  36. 36.
    Strulo, B.: Process Algebra for Discrete Event Simulation. PhD thesis, Department of Computing, Imperial College, University of London (1993)Google Scholar
  37. 37.
    Winskel, G.: Events in Computation. PhD thesis, Department of Computer Science, University of Edinburgh (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mario Bravetti
    • 1
  • Pedro R. D’Argenio
    • 2
  1. 1.Dip. di Scienze dell’InformazioneUniversità di BolognaBolognaItaly
  2. 2.CONICET – FaMAFUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations