Validation of Stochastic Systems pp 419-444

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2925)

An Abstraction Framework for Mixed Non-deterministic and Probabilistic Systems

  • Michael Huth

Abstract

We study abstraction techniques for model checking systems that combine non-deterministic with probabilistic behavior, emphasizing the discrete case. Existing work on abstraction offers a host of isolated techniques which we discuss uniformly through the formulation of abstracted model-checking problems (MCPs). Although this conceptualization is primarily meant to be a useful focal point for surveying the literature on abstraction-based model checking even beyond such combined systems, it also opens up new research opportunities and challenges for abstract model checking of mixed systems. In particular, we sketch how quantitative domain theory may be used to specify the precision of answers obtained from abstract model checks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Oxford Univ. Press, Oxford (1994)Google Scholar
  2. 2.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Engelen, B., Majster-Cederbaum, M.: Deciding Bisimilarity and Similarity for Probabilistic Processes. Journal of Computer and System Sciences 60, 187–231 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baier, C., Stoelinga, M.I.A.: Norm functions for probabilistic bisimulations with delays. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 1–16. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Kwiatkowska, M., Norman, G.: Computing probability bounds for linear time formulas over concurrent probabilistic systems. In: Kwiatkowska, M., Baier, C., Huth, M., Ryan, M. (eds.) Electronic Notes in Theoretical Computer Science, vol. 22. Elsevier Science Publishers, Amsterdam (2000)Google Scholar
  6. 6.
    Bradfield, J.C.: Verifying Temporal Properties Of Systems. Birkhäuser, Boston (1991)Google Scholar
  7. 7.
    Bruns, G., Godefroid, P.: Model Checking Partial State Spaces with 3-Valued Temporal Logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Bruns, G., Godefroid, P.: Generalized Model Checking: Reasoning about Partial State Spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Bryant, R.R.: Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams. ACM Computing Surveys 24(3), 293–318 (1992)CrossRefGoogle Scholar
  10. 10.
    Burch, J.R., Clarke, E.M., Dill, D.L., McMillan, K.L., Hwang, J.: Symbolic model checking: 1020 states and beyond. In: Proceedings of the Fifth Annual Symposium on Logic in Computer Science (June 1990)Google Scholar
  11. 11.
    Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–385. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Cerans, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification - theory and tools. In: Computer Aided Verification, pp. 253–267 (1993)Google Scholar
  13. 13.
    Chen, Y.-F., Gansner, E.R., Koutsofios, E.: A C++ data model supporting reachability analysis and dead code detection. In: Jazayeri, M., Schauer, H. (eds.) Proceedings of the Sixth European Software Engineering Conference (ESEC/FSE 1997), pp. 414–431. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Clark, D., Hankin, C., Hunt, S., Nagarajan, R.: Possibilistic Information Flow is safe for Probabilistic Non-Interference. In: Workshop on Issues in the Theory of Security WITS 2000, Geneva, Switzerland, July 7-8 (2000)Google Scholar
  15. 15.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded Model Checking Using Satisfiability Solving. Formal Methods in System Design 19(1), 7–34 (2001)MATHCrossRefGoogle Scholar
  16. 16.
    Clarke, E.M., Fujita, M., Zhao, X.: Representations of discrete functions, chapter Multi-terminal binary decision diagrams and hybrid decision diagrams, pp. 93–108. Kluwer academic publishers, Dordrecht (1996)Google Scholar
  17. 17.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  18. 18.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  19. 19.
    Cleaveland, R., Smolka, S.A., Zwarico, A.E.: Testing preorders for probabilistic processes. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 708–719. Springer, Heidelberg (1992)Google Scholar
  20. 20.
    Courcoubetis, C., Yannakakis, M.: The Complexity of Probabilistic Verification. Journal of the Association of Computing Machinery 42(4), 857–907 (1995)MATHMathSciNetGoogle Scholar
  21. 21.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs. In: Proc. 4th ACM Symp. on Principles of Programming Languages, pp. 238–252. ACM Press, New York (1977)Google Scholar
  22. 22.
    Cousot, P., Cousot, R.: Temporal abstract interpretation. In: Conference Record of the 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston, Mass, pp. 12–25. ACM Press, New York (2000)Google Scholar
  23. 23.
    Dams, D.: Abstract Interpretation and Partition Refinement for Model Checking. PhD thesis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (July 1996)Google Scholar
  24. 24.
    D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability Analysis of Probabilistic Systems by Successive Refinements. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reduction and Refinement Strategies for Probabilistic Analysis. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 57–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Denning, D.: A Lattice Model of Secure Information Flow. Communications of the ACM 19(5), 236–243 (1976)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Denning, D.: Certification of Programs for Secure Information Flow. Communications of the ACM 20(7), 504–513 (1977)MATHCrossRefGoogle Scholar
  28. 28.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for Labelled Markov Processes. Journal of Information and Computation 179(2), 163–193 (2002)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating Labeled Markov Processes. In: 15th Annual IEEE Symposium on Logic in Computer Science LICS 2000, Santa Barbara, California. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  30. 30.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is sound and complete for PCTL*. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 355–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Dwyer, M.B., Schmidt, D.A.: Limiting State Explosion with Filter-Based Refinement. In: Proceedings of the ILPS 1997 Workshop on Verification, Model Checking, and Abstraction (1997)Google Scholar
  32. 32.
  33. 33.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer, Heidelberg (1980)MATHGoogle Scholar
  34. 34.
    Gilmore, S., Ryan, M. (eds.): Language Constructs for Describing Features. In: Proc. of the FIREworks workshop. Springer, Heidelberg (2001)Google Scholar
  35. 35.
    Godefroid, P.: Model Checking for Programming Languages using VeriSoft. In: Proceedings of the 24th ACM Symposium on Principles of Programming Languages, Paris, January 1997, pp. 174–186 (1997)Google Scholar
  36. 36.
    Graf, S., Sifakis, J.: Readiness Semantics for Regular Processes with Silent Actions. In: Proc. of ICALP 1987, pp. 115–125 (1987)Google Scholar
  37. 37.
    Halmos, P.R.: Measure Theory. In: Graduate Texts in Mathematics 18. Springer, Heidelberg (1950)Google Scholar
  38. 38.
    Hansson, H.: Time and Probability in Formal Design of Distributed Systems. PhD thesis, Department of Computer Science, Uppsala University, Uppsala, Sweden (1991)Google Scholar
  39. 39.
    Hansson, H.A., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)MATHCrossRefGoogle Scholar
  40. 40.
    Harding, A., Ryan, M., Schobbens, P.-Y.: Approximating ATL* in ATL. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 289–301. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  41. 41.
    Hatcliff, J., Corbett, J.C., Dwyer, M.B., Sokolowski, S., Zheng, H.: A formal study of slicing for multi-threaded programs with JVM concurrency primitives. In: Static Analysis Symposium, pp. 1–18 (1999)Google Scholar
  42. 42.
    Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation. Theoretical Computer Science 274(1–2), 43–87 (2002)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Hermanns, H., Katoen, J.-P.: Performance Evaluation : = (Process Algebra + Model Checking) × Markov Chains. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 59–81. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  44. 44.
    Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428, p. 57. Springer, Heidelberg (2002)MATHCrossRefGoogle Scholar
  45. 45.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  46. 46.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  47. 47.
    Huth, M.: A Unifying Framework for Model Checking Labeled Kripke Structures, Modal Transition Systems, and Interval Transition Systems. In: Proceedings of the 19th International Conference on the Foundations of Software Technology & Theoretical Computer Science, IIT Chennai, India. LNCS, pp. 369–380. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  48. 48.
    Huth, M.: Domains of view: a foundation for specification and analysis. In: Domains and Processes, pp. 183–218. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  49. 49.
    Huth, M.: Probabilistic Abstraction-Based Model Checking. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 115–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  50. 50.
    Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, pp. 111–122. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  51. 51.
    Huth, M.: The interval domain: A matchmaker for aCTL and aPCTL. In: Mislove, M., Cleaveland, R., Mulry, P. (eds.) Electronic Notes in Theoretical Computer Science, vol. 14. Elsevier Science Publishers, Amsterdam (2000)Google Scholar
  52. 52.
    Huynh, T., Tian, L.: On some Equivalence Relations for Probabilistic Processes. Fundamenta Informaticae 17, 211–234 (1992)MATHMathSciNetGoogle Scholar
  53. 53.
    Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. Science of Computer Programming 28(2–3), 171–192 (1997)MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Jones, C.: Probabilistic Nondeterminism. PhD thesis, Laboratory for the Foundations of Computer Science, University of Edinburgh, Edinburgh, Scotland, Monograph ECS-LFCS-90-105 (1990)Google Scholar
  55. 55.
    Jones, C., Plotkin, G.: A probabilistic powerdomain of evaluations. In: Proceedings of the IEEE 4th Annual Symposium on Logic in Computer Science, pp. 186–195. IEEE Computer Society Press, Los Alamitos (1989)CrossRefGoogle Scholar
  56. 56.
    Jonsson, B., Larsen, K.G.: Specification and Refinement of Probabilistic Processes. In: 6th Annual IEEE Symposium on Logic in Computer Science, Amsterdam, The Netherlands, July 15-18, pp. 266–277. IEEE Computer Society Press, Los Alamitos (1991)CrossRefGoogle Scholar
  57. 57.
    Kannelakis, P., Smolka, S.: CCS Expressions, Finite State Processes and Three Problems of Equivalence. Journal of Information and Computation 86, 43–68 (1990)CrossRefGoogle Scholar
  58. 58.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)MATHGoogle Scholar
  59. 59.
    Kozen, D.: Semantics of Probabilistic Programs. Computer and System Sciences 22, 328–350 (1981)MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Kozen, D.: A Probabilistic PDL. Computer and System Sciences 22(2), 162–178 (1985)CrossRefMathSciNetGoogle Scholar
  61. 61.
    Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic Model Checking of the IEEE 802.11 Wireless Local Area Network Protocol. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 169–187. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  62. 62.
    Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems. International Workshop, Grenoble, France. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1989)Google Scholar
  63. 63.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: Third Annual Symposium on Logic in Computer Science, pp. 203–210. IEEE Computer Society Press, Los Alamitos (1988)CrossRefGoogle Scholar
  65. 65.
    Lassaigne, R., Peyronnet, S.: Approximate Verification of Probabilistic Systems. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 213–214. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  66. 66.
    Martin, K.: The measurement process in domain theory. In: Proc. of Automata, Languages and Programming ICALP 2000, pp. 116–126 (2000)Google Scholar
  67. 67.
    McIver, A., Morgan, C.: Almost-certain eventualities and abstract probabilities in quantitative temporal logic. In: Fidge, C. (ed.) Electronic Notes in Theoretical Computer Science, vol. 42. Elsevier Science Publishers, Amsterdam (2001)Google Scholar
  68. 68.
    McIver, A., Morgan, C.: Games, probability and the quantitative μ-calculus qMμ. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 292–310. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  69. 69.
    Milner, R.: An algebraic definition of simulation between programs. In: 2nd International Joint Conference on Artificial Intelligence, pp. 481–489. British Computer Society, London (1971)Google Scholar
  70. 70.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  71. 71.
    Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  72. 72.
    Monniaux, D.: Abstract interpretation of programs as Markov decision processes. Technical report, Départment d’Informatique,École Normale Supérieure, 45, rue d’Ulm, 75230 Paris cedex 5, France (2001)Google Scholar
  73. 73.
    Monniaux, D.: Backwards abstract interpretation of probabilistic programs. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, p. 367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  74. 74.
    Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 322–340. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  75. 75.
    Monniaux, D.: An abstract analysis of the probabilistic termination of programs. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, Springer, Heidelberg (2001)Google Scholar
  76. 76.
    Monniaux, D.: An abstract Monte-Carlo method for the analysis of probabilistic programs (extended abstract). In: 28th Symposium on Principles of Programming Languages POPL 2001, pp. 93–101. Association for Computer Machinery (2001)Google Scholar
  77. 77.
    Monniaux, D.: Analyse de programmes probabilistes par interprétation abstraite. Résumé étendu en français. Contents in English,Résumé étendu en français. Contents in English (2001)Google Scholar
  78. 78.
    Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented probability for CSP. Formal Aspects of Computing 8(6), 617–647 (1996)MATHCrossRefGoogle Scholar
  79. 79.
    Morgan, C., McIver, A.: An expectation-based model for probabilistic temporal logic. Logic Journal of the IGPL 7(6), 779–804 (1999)MATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM Transactions on Programming Languages and Systems 18(3), 325–353 (1996)CrossRefGoogle Scholar
  81. 81.
    Motvani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)Google Scholar
  82. 82.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)MATHGoogle Scholar
  83. 83.
    Papadimitriou, C.H.: Games against nature. Journal of Computer and System Sciences 31, 288–301 (1985)MATHCrossRefMathSciNetGoogle Scholar
  84. 84.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  85. 85.
    Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1989)Google Scholar
  86. 86.
    Pasareanu, C.S.: DEOS kernel: Environment modeling using LTL assumptions. Technical Report #NASA-ARC-IC-2000-196, NASA Ames (July 2000)Google Scholar
  87. 87.
    Phillipou, A., Lee, I., Sokolsky, O.: Weak Bisimulation for Probabilistic Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  88. 88.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate Non-interference. In: CSFW 2002 15th IEEE Computer Security Foundation Workshop, June 2002, pp. 1–15 (2002)Google Scholar
  89. 89.
    Di Pierro, A., Wicklicky, H.: Probabilistic Abstract Interpretation and Statistical Testing. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol. 2399, pp. 211–212. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  90. 90.
    Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report FN-19, DAIMI, Computer Science Department, Aarhus University, Ny Munkegade, Building 540, DK-8000 Aarhus, Denmark (September 1981); Reprinted April 1991Google Scholar
  91. 91.
    Puterman, M.L.: Markov decision processes: discrete stochastic dynamic programming. In: Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Chichester (1994)Google Scholar
  92. 92.
    Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic Decision Diagrams and Their Applications. In: IEEE /ACM International Conference on CAD, Santa Clara, California, pp. 188–191. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  93. 93.
    Sagiv, M., Reps, T., Wilhelm, R.: Parametric Shape Analysis via 3-Valued Logic. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of programming languages, San Antonio, Texas, January 20-22, pp. 105–118 (1999)Google Scholar
  94. 94.
    Scott, D.: Continuous lattices. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geometry and Logic. Lecture Notes in Mathematics, vol. 274, pp. 97–136. Springer, Heidelberg (1972)CrossRefGoogle Scholar
  95. 95.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology, Available as Technical Report MIT/LCS/TR-676 (June 1995)Google Scholar
  96. 96.
    Segala, R., Lynch, N.: Probabilistic Simulations for Probabilistic Processes. Nordic Journal of Computing 2(2), 250–273 (Summer 1995)MATHMathSciNetGoogle Scholar
  97. 97.
    Seidel, K., Morgan, C., McIver, A.: An introduction to probabilistic predicate transformers. Technical Report PRG-TR-6-96, Programming Research Group, Oxford Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD (1996)Google Scholar
  98. 98.
    Selic, B.: Physical programming: Beyond mere logic. In: ETAPS 2001 (2001) (Invited Talk)Google Scholar
  99. 99.
    van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimulation Semantics. Journal of the ACM 43(3), 555–600 (1996)CrossRefMathSciNetMATHGoogle Scholar
  100. 100.
    Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Proc. 26th IEEE Symp. on Foundations of Computer Science, Portland, Oregon, October 1985, pp. 327–338 (1985)Google Scholar
  101. 101.
    Volpano, D.: Provably secure programming languages for remote evaluation. ACM Computing Surveys: electronic 28A(2) (December 1996)Google Scholar
  102. 102.
    Waszkiewicz, P.: Quantitative Continuous Domains. PhD thesis, School of Computer Science, University of Birmingham, United Kingdom (July 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael Huth
    • 1
  1. 1.Department of ComputingImperial College LondonLondonUnited Kingdom

Personalised recommendations