Power Sources for Wireless Sensor Networks

  • Shad Roundy
  • Dan Steingart
  • Luc Frechette
  • Paul Wright
  • Jan Rabaey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2920)


Wireless sensor networks are poised to become a very significant enabling technology in many sectors. Already a few very low power wireless sensor platforms have entered the marketplace. Almost all of these platforms are designed to run on batteries that have a very limited lifetime. In order for wireless sensor networks to become a ubiquitous part of our environment, alternative power sources must be employed. This paper reviews many potential power sources for wireless sensor nodes. Well established power sources, such as batteries, are reviewed along with emerging technologies and currently untapped sources. Power sources are classified as energy reservoirs, power distribution methods, or power scavenging methods, which enable wireless nodes to be completely self-sustaining. Several sources capable of providing power on the order of 100 μW/cm3 for very long lifetimes are feasible. It is the authors’ opinion that no single power source will suffice for all applications, and that the choice of a power source needs to be considered on an application-by-application basis.


Fuel Cell Sensor Node Wireless Sensor Network Power Source Heat Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rabaey, J., Ammer, J., Karalar, T., Li, S., Otis, B., Sheets, M., Tuan, T.: PicoRadios for Wireless Sensor Networks: The Next Challenge in Ultra-Low-Power Design. In: Proceeding of the International Solid-State Circuits Conference (2002)Google Scholar
  2. 2.
    Warneke, B., Atwood, B., Pister K.S.J.: Smart Dust Mote Forerunners. In: Fourteenth Annual International Conference on Micro-electromechanical Systems (MEMS 2001) (2001)Google Scholar
  3. 3.
    Hill, J., Culler, D.: Mica: A Wireless Platform for Deeply Embedded Networks. IEEE Micro 22(6), 12–24 (2002)CrossRefGoogle Scholar
  4. 4.
    Bates, J., Dudney, N., Neudecker, B., Ueda, A., Evans, C.D.: Thin-film lithium and lithium-ion batteries. Solid State Ionics 135, 33–45 (2000)CrossRefGoogle Scholar
  5. 5.
    Harb, J.N., LaFollete, R.M., Selfridge, R.H., Howell, L.L.: Mircobatteries for self suststained hybrid micropower supplies. Journal of Power Sources 104, 46–51 (2002)CrossRefGoogle Scholar
  6. 6.
    Hart, R.W., White, H.S., Dunn, B., Rolison, D.R.: 3-D Microbatteries. Electrochemistry Communications 5, 120–123 (2003)CrossRefGoogle Scholar
  7. 7.
    Heinzel, A., Hebling, C., Muller, M., Zedda, M., Muller, C.: Fuel cells for low power applications. Journal of Power Sources 105, 250–255 (2002)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Kordesh, K., Simader, G.: Fuel cells and their applications. VCH Publishers, New York (2001)Google Scholar
  10. 10.
    Holloday, J.D., Jones, E.O., Phelps, M., Hu, J.: Microfuel processor for use in a miniature power supply. Journal of Power Sources 108, 21–27 (2002)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Lee, S.J., Chang-Chien, A., Cha, S.W., O’Hayre, R., Park, Y.I., Saito, Y., Prinz, F.B.: Design and fabrication of a micro fuel cell array with “flip-flop” interconnection. Journal of Power Sources 112, 410–418 (2002)CrossRefGoogle Scholar
  13. 13.
    Epstein, A.H., et al.: Micro-Heat Engine, Gas Turbine, and Rocket Engines – The MIT Microengine Project. AIAA 97-1773, 28th AIAA Fluid Dynamics Conf.(1997)Google Scholar
  14. 14.
    Lee, C., Arslan, S., Liu, Y.-C., Fréchette, L.G.: Design of a Microfabricated Rankine Cycle Steam Turbine for Power Generation. ASME IMECE (2003)Google Scholar
  15. 15.
    Fu, K., Knobloch, A.J., Martinez, F.C., Walther, D.C., Fernandez-Pello, C., Pisano, A.P., Liepmann, D.: Design and Fabrication of a Silicon-Based MEMS Rotary Engine. In: ASME IMECE (2001)Google Scholar
  16. 16.
    Toriyama, T., Hashimoto, K., Sugiyama, S.: Design of a Resonant Micro Reciprocating Engine for Power Generation. Transducers 2003 (2003)Google Scholar
  17. 17.
    Whalen, S., Thompson, M., Bahr, D., Richards, C., Richards, R.: Design, Fabrication and Testing of the P3 Micro Heat Engine. Sensors and Actuators 104(3), 200–208 (2003)Google Scholar
  18. 18.
    Schaevitz, S.B., Franz, A.J., Jensen, K.F., Schmidt, M.A.: A Combustion-based MEMS Thermoelectric Power Generator. In: Transducers 2001, Munich, pp. 30–33 (2001)Google Scholar
  19. 19.
    Zhang, C., Najafi, K., Bernal, L.P., Washabaugh, P.D.: Micro Combustion-Thermionic Power Generation: Feasibility, Design and Initial Results. In: Transducers 2003(2003)Google Scholar
  20. 20.
    Nielsen, O.M., Arana, L.R., Baertsch, C.D., Jensen, K.F., Schmidt, M.A.: A Thermophotovoltaic Micro-Generator for Portable Power Applications. In: Transducers 2003 (2003)Google Scholar
  21. 21.
    Li, H., Lal, M.: Self-reciprocating radio-isotope powered cantilever. Journal of Applied Physics 92(2), 1122–1127 (2002)CrossRefGoogle Scholar
  22. 22.
    Friedman, D., Heinrich, H., Duan, D.-W.: A Low-Power CMOS Integrated Circuit for Field-Powered Radio Frequency Identification. In: Proceedings of the 1997 IEEE Solid-State Circuits Conference, pp. 294–295 (1997)Google Scholar
  23. 23.
  24. 24.
    Smith, A.A.: Radio frequency principles and applications: the generation, propagation, and reception of signals and noise. IEEE Press, New York (1998)Google Scholar
  25. 25.
    Randall, J.F.: On ambient energy sources for powering indoor electronic devices, Ph.D Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland (May 2003)Google Scholar
  26. 26.
    Stordeur, M., Stark, I.: Low Power Thermoelectric Generator – self-sufficient energy supply for micro systems. In: 16th International Conference on Thermoelectrics, pp. 575–577 (1997)Google Scholar
  27. 27.
    Pescovitz, D.: The Power of Small Tech. Smalltimes 2(1) (2002)Google Scholar
  28. 28.
    Starner, T.: Human-powered wearable computing. IBM Systems Journal 35(3), 618–629 (1996)CrossRefGoogle Scholar
  29. 29.
    Shenck, N.S., Paradiso, J.A.: Energy Scavenging with Shoe-Mounted Piezoelectrics. IEEE Micro 21, 30–41 (2001)CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Williams, C.B., Yates, R.B.: Analysis of a micro-electric generator for Microsystems. Transducers 95/Eurosensors IX, 369–372 (1995)Google Scholar
  32. 32.
    Roundy, S., Wright, P.K., Rabaey, J.: A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes. Computer Communications 26(11), 1131–1144 (2003)CrossRefGoogle Scholar
  33. 33.
    Meninger, S., Mur-Miranda, J.O., Amirtharajah, R., Chandrakasan, A.P., Lang, J.H.: Vibration- to-Electric Energy Conversion. IEEE Trans. VLSI Syst. 9, 64–76 (2001)CrossRefGoogle Scholar
  34. 34.
    Ottman, G.K., Hofmann, H.F., Lesieutre, G.A.: Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics 18(2), 696–703 (2003)CrossRefGoogle Scholar
  35. 35.
    Roundy, S., Otis, B., Chee, Y.-H., Rabaey, J., Wright, P.K.: A 1.9 GHz Transmit Beacon using Environmentally Scavenged Energy. In: ISPLED 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Shad Roundy
    • 1
  • Dan Steingart
    • 2
  • Luc Frechette
    • 3
  • Paul Wright
    • 2
  • Jan Rabaey
    • 2
  1. 1.Department of EngineeringAustralian National UniversityCanberraAustralia
  2. 2.Department of Mechanical Engineering, Electrical Engineering and Computer ScienceUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Department of Mechanical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations