Abstract

We study algorithms for finding satisfying assignments of randomly generated 3-SAT formula. In particular, we consider distributions of highly constrained formulas (that is, “above the threshold” formulas) restricted to satisfiable instances. We obtain positive algorithmic results, showing that such formulas can be solved in low exponential time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D., Peres, Y.: The Threshold for Random k-SAT is 2k (ln 2 + o(1)). In: 35th ACM Symposium on Theory of Computing (STOC 2003) (2003)Google Scholar
  2. 2.
    Achlioptas, D., Sorkin, G.B.: Optimal myopic algorithms for random 3-SAT. In: Proc. 41st IEEE Symp. on Foundations of Comput. Sci., pp. 590–600 (2000)Google Scholar
  3. 3.
    Beame, P., Karp, R., Pitassi, T., Saks, M.: On the complexity of unsatisfiability of random k-CNF formulas. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, Dallas, TX, May 1998, pp. 561–571 (1998)Google Scholar
  4. 4.
    Beame, P., Pitassi, T.: Propositional Proof Complexity: Past, Present and Future. Electronic Colloquium on Computational Complexity (ECCC) 5(067) (1998)Google Scholar
  5. 5.
    Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schning, U.: A Deterministic (2 − 2/(k + 1))n Algorithm for k-SAT Based on Local Search. Theoretical Computer Science 289 (2002)Google Scholar
  6. 6.
    Dubois, O., Boufkhad, Y., Mandler, J.: Typical random 3 SAT formulae and the satisfiability threshold. In: Proc. 11th ACM SIAM Symp. on Discrete Algorithms, San Franscisco, CA, pp. 124–126 (January 2000), Electronic Colloquium on Computational Complexity, TR03-007 (2003)Google Scholar
  7. 7.
    Flaxman, A.: A spectral technique for random satisfiable 3CNF formulas. In: SODA 2003 (2003)Google Scholar
  8. 8.
    Frieze, A.M., Suen, S.: Analysis of two simple heuristics on a random instance of k-SAT. J. Comput. System Sci. 53, 312–355 (1996)MathSciNetGoogle Scholar
  9. 9.
    Gent, I.: On the Stupid Algorithm for Satisfiability. APES Technical Report 03 (1998)Google Scholar
  10. 10.
    Goerdt, A., Jurdzinski, T.: Some Results On Random Unsatisfiable K-Sat Instances and Approximation Algorithms Applied To Random Structures. Combinatorics, Probability & Computing 12 (2003)Google Scholar
  11. 11.
    Goerdt, A., Krivelevich, M.: Efficient recognition of random unsatisfiable k-SAT instances by spectral methods. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 294–304. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Goerdt, A., Lanka, A.: Recognizing more random unsatisfiable 3-SAT instances efficiently. In: LICS 2003, Workshop on Typical case complexity and phase transitions, Ottawa, Canada (June 21, 2003)Google Scholar
  13. 13.
    Hirsch, E.: SAT Local Search Algorithms: Worst-Case Study. Journal of Automated Reasoning 24(1/2), 127–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kamath, A., Motwani, R., Palem, K., Spirakis, P.: Tail Bounds for Occupancy and the Satisfiability Threshold Conjecture. Random Structures and Algorithms 7, 59–80 (1995)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: The Probabilistic Analysis of a Greedy Satisfiability Algorithm. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 574–585. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Kirousis, L.M., Kranakis, E., Krizanc, D., Stamatiou, Y.C.: Approximating the Unsatisfiablity Threshold of Random Formulas. Random Structures and Algorithms 12, 253–269 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Koutsoupias, E., Papadimitriou, C.H.: On the greedy algorithm for satisfiability. Inform. Process. Lett. 43, 53–55 (1992)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  19. 19.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  20. 20.
    Papadimitriou, C.H.: On selecting a satisfying truth assignment (Extended Abstract). In: 32nd IEEE Symposium on Foundations of Comput. Sci., pp. 163–169 (1991)Google Scholar
  21. 21.
    Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: 40th IEEE Symposium on Foundations of Comput. Sci., pp. 410–414 (1999) Google Scholar
  22. 22.
    Schuler, R., Schöning, U., Watanabe, O., Hofmeister, T.: A probabilistic 3-SAT algorithm further improved. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, p. 192. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Selman, B., Levesque, H., Mitchell, D.: Hard and Easy Distributions of SAT Problems. In: Proc. of the 10th National Conference on Artificial Intelligence, pp. 459–465 (1992)Google Scholar
  24. 24.
    Selman, B., Levesque, H., Mitchell, D.: A New Method for Solving Hard Satisfiability Problems. In: Proc. of the 10th National Conference on Artificial Intelligence, pp. 440–446 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hubie Chen
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations