Advertisement

Timed Concurrent Constraint Programming: Decidability Results and Their Application to LTL

  • Frank D. Valencia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2916)

Abstract

The ntcc process calculus is a timed concurrent constraint programming (ccp) model equipped with a first-order linear-temporal logic (LTL) for expressing process specifications. A typical behavioral observation in ccp is the strongest postcondition (sp). The ntcc sp denotes the set of all infinite output sequences that a given process can exhibit. The verification problem is then whether the sequences in the sp of a given process satisfy a given ntcc LTL formula.

This paper presents new positive decidability results for timed ccp as well as for LTL. In particular, we shall prove that the following problems are decidable: (1) The sp equivalence for the so-called locally-independentntcc fragment; unlike other fragments for which similar results have been published, this fragment can specify infinite-state systems. (2) Verification for locally-independent processes and negation-free first-order formulae of the ntcc LTL. (3) Implication for such formulae. (4) Satisfiability for a first-order fragment of Manna and Pnueli’s LTL. The purpose of the last result is to illustrate the applicability of ccp to well-established formalisms for concurrency.

Keywords

Temporal Logic Constraint Programming Decidability Result Observable Transition State Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M.: The power of temporal proofs. Theoretical Computer Science 65, 35–84 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Buchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Int. Conf. on Logic, Methodology, and Philosophy of Science, pp. 1–11 (1962)Google Scholar
  3. 3.
    Choueka, Y.: Theories of automata on ω-tapes:A simplified approach. Computer and System Sciences 10, 19–35 (1974)MathSciNetzbMATHGoogle Scholar
  4. 4.
    de Boer, F., Gabbrielli, M., Meo, M.C.: Atimed concurrent constraint language. Information and Computation 161, 45–83 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    de Boer, F., Gabbrielli, M., Marchiori, E., Palamidessi, C.: Proving concurrent constraint programs correct. ACM Transactions on Programming Languages and Systems 19(5) (1997)Google Scholar
  6. 6.
    Delzanno, G., Podelski, A.: Model checking in CLP. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 223. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Esparza, J., Melzer, S.: Model checking LTL using constraint programming. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Falaschi, M., Policriti, A., Villanueva, A.: Modelling timed concurrent systems in a temporal concurrent constraint language - I. ENTCS, vol. 48 (2001)Google Scholar
  9. 9.
    Hodkinson, I., Wolter, F., Zakharyasche, M.: Decidable fragments of first-order temporal logic. Ann. Pure. Appl. Logic 106, 85–134 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems, Specification. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  11. 11.
    Merz, S.: Decidability and incompleteness results for first-order temporal logics of linear time. Journal of Applied Non-Classical Logic 2(2) (1992)Google Scholar
  12. 12.
    Milner, R.: A finite delay operator in synchronous ccs. TR CSR-116-82, Univ. of EdinburghGoogle Scholar
  13. 13.
    Milner, R.: Communicating and Mobile Systems: the π-calculus (1999)Google Scholar
  14. 14.
    Nielsen, M., Palamidessi, C., Valencia, F.: On the expressive power of concurrent constraint programming languages. In: PPDP 2002, October 2002, pp. 156–167. ACM Press, New York (2002)CrossRefGoogle Scholar
  15. 15.
    Nielsen, M., Palamidessi, C., Valencia, F.: Temporal concurrent constraint programming: Denotation, logic and applications. Nordic Journal of Computing 9(2), 145–188 (2002)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Nielsen, M., Valencia, F.: Temporal Concurrent Constraint Programming: Applications and Behavior. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 298–324. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Palamidessi, C., Valencia, F.: A temporal concurrent constraint programming calculus. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, p. 302. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Saraswat, V., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent constraint programming. In: Proc. of LICS 1994, pp. 71–80 (1994)Google Scholar
  19. 19.
    Saraswat, V., Jagadeesan, R., Gupta, V.: Programming in timed concurrent constraint languages. In: Constraint Programming: Proc. 1993, pp. 361–410. Springer, Heidelberg (1994)Google Scholar
  20. 20.
    Saraswat, V., Jagadeesan, R., Gupta, V.: Timed default concurrent constraint programming. Journal of Symbolic Computation 22, 475–520 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Saraswat, V., Rinard, M., Panangaden, P.: The semantic foundations of concurrent constraint programming. In: POPL 1991, pp. 333–352 (1991)Google Scholar
  22. 22.
    Sistla, A., Vardi, M., Wolper, P.: The complementation problem for buchi automata with applications to temporal logic. Theoretical Computer Science 49, 217–237 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tini, S.: On the expressiveness of timed concurrent constraint programming. ENTCS, vol. 27 (1999)Google Scholar
  24. 24.
    Valencia, F.: Temporal Concurrent Constraint Programming. PhD thesis, BRICS Univ. of Aarhus (2003), Available online via http://www.brics.dk/~fvalenci/publications.html
  25. 25.
    Vardi, M.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Frank D. Valencia
    • 1
  1. 1.Dept. of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations